Influence of shielding gas flow on the TIG welding process using stainless steel 304 material

Aljufri Aljufri, Sofyan Sofyan, Muhammad Nuzan Rizki, Reza Putra, Indra Mawardi

Abstract


A common issue encountered with main heat exchanger equipment is improper operation, which can lead to the development of cracks in the stainless-steel pipes. The welding process alters the metal microstructure in the heat-affected zone, thereby affecting the mechanical properties of the welded joint. To mitigate this issue, TIG welding with argon shielding gas is employed. This method helps prevent oxidation and ensures the formation of a stable welding arc in 304 stainless steel, which is renowned for its excellent mechanical properties and corrosion resistance. The objective of this study is to evaluate the impact of variations in shielding gas flow on the mechanical properties of 304 stainless steel plates during the TIG welding process. The aim is to determine the optimal settings for producing robust and long-lasting welded joints. To assess the hardness of the welded joints, we employed a Brinell-type Hardness Tester FB-3000LC machine. A Brinell steel ball indenter measuring 5 mm on the HBW scale and applying a load of 125 Kgf was utilized. At a protective gas flow rate of 8 L/min, the average tensile stress was 44.72 N/mm², strain was 0.177, modulus of elasticity was 2518 MPa, and hardness was 99.712 HBW. Increasing the gas flow rate to 13 L/min resulted in an average tensile stress of 47.50 N/mm², strain of 0.189, elastic modulus of 2525 MPa, and hardness of 105.522 HBW. Further increasing the gas flow rate to 18 L/min led to an average tensile stress of 49.69 N/mm², strain of 0.192, modulus of elasticity of 2597 MPa, and hardness of 106.704 HBW. Based on the research findings, it was observed that the weld area exhibited an increase in hardness values due to the heat generated during the welding process. The use of protective gas flow during welding is deemed effective in producing well-formed welded joints, as it prevents fractures from occurring within the weld area during the tensile test process. The choice of protective gas is determined by the dimensions of the material plate.

Keywords


Shield Gas Flow; TIG welding; Stainless Steel 304; Mechanical Properties

Full Text:

PDF

References


A. A. Tohari, “Pengaruh Kecepatan Aliran Gas Pelindung Las MIG Baja SS-540.” JTM Unesa, vol. 9, no. 1, 2021, Available: https://ejournal.unesa.ac.id/index.php/jtm-unesa/article/view/38246

E. Karayel and Y. Bozkurt, “Additive manufacturing method and different welding applications,” Journal of Materials Research and Technology, vol. 9, no. 5, pp. 11424–11438, Sep. 2020, doi: 10.1016/j.jmrt.2020.08.039.

Y. M. Zhang, Y.-P. Yang, W. Zhang, and S.-J. Na, “Advanced Welding Manufacturing: A Brief Analysis and Review of Challenges and Solutions,” J Manuf Sci Eng, vol. 142, no. 11, Nov. 2020, doi: 10.1115/1.4047947.

J. Zhao et al., “Dynamic constitutive model of U75VG rail flash-butt welded joint and its application in wheel-rail transient rolling contact simulation,” Eng Fail Anal, vol. 134, p. 106078, Apr. 2022, doi: 10.1016/j.engfailanal.2022.106078.

A. Królicka, K. Radwański, R. Kuziak, T. Zygmunt, and A. Ambroziak, “Microstructure-based approach to the evaluation of welded joints of bainitic rails designed for high-speed railways,” J Constr Steel Res, vol. 175, p. 106372, Dec. 2020, doi: 10.1016/j.jcsr.2020.106372.

B. Wang, S. J. Hu, L. Sun, and T. Freiheit, “Intelligent welding system technologies: State-of-the-art review and perspectives,” J Manuf Syst, vol. 56, pp. 373–391, Jul. 2020, doi: 10.1016/J.JMSY.2020.06.020.

A. B. Pereira and F. J. M. Q. de Melo, “Quality Assessment and Process Management of Welded Joints in Metal Construction—A Review,” Metals (Basel), vol. 10, no. 1, p. 115, Jan. 2020, doi: 10.3390/met10010115.

H. Sunandrio et al., “Analisis Kerusakan Tube Thermocouple Pada Reaktor Hydrocracking Di Kilang Pengolahan Minyak Bumi.”

F. Habibi, S. Mulyo, and B. Respati, Perlakuan Pemanasan Awal Elektroda Terhadap Sifat Mekanik Dan Fisik Pada Daerah Haz Hasil Pengelasan Baja Karbon St 41. SNST 6 (2015).

S. K. Sharma, S. Maheshwari, and R. K. R. Singh, “Modeling and Optimization of HAZ Characteristics for Submerged Arc Welded High Strength Pipeline Steel,” Transactions of the Indian Institute of Metals, vol. 72, no. 2, pp. 439–454, Feb. 2019, doi: 10.1007/s12666-018-1495-5.

A. Jain, B. Singh, and Y. Shrivastava, “Analysis of heat affected zone (HAZ) during micro-drilling of a new hybrid composite,” Proc Inst Mech Eng C J Mech Eng Sci, vol. 234, no. 2, pp. 620–634, Jan. 2020, doi: 10.1177/0954406219877911.

S. Junus, “Pengaruh Besar Aliran Gas terhadap Cacat Porositas dan Struktur Mikro Hasil Pengelasan MIG pada Paduan Aluminium 5083,” ROTOR, vol. 4, no. 1, pp. 22–30, Jan. 2011.

I. Apriadi, J. waluyo, A. Duniawan, P. S. Studi Teknik Mesin, and J. Teknik Mesin, “Pengaruh kecepatan Pengelasan Tungsten Inert Gas Terhadap Sifat Fisis dan mekanis Pada Pengelasan Baja Karbon Menengah.” SIMETRIS (2020) 14(1) 16-17.

Z. Hilmy, N. Syahroni, and Y. S. Hadiwidodo, “Analisa Pengaruh Variasi Komposisi Gas Pelindung Terhadap Hasil Pengelasan Gmaw-Short Circuit dengan Penggunaan Mesin Khusus Regulated Metal Deposition (RMD),” pp. 219–226, 2018.

L. Pan, C. T. Kwok, and K. H. Lo, “Friction-stir processing of AISI 440C high-carbon martensitic stainless steel for improving hardness and corrosion resistance,” J Mater Process Technol, vol. 277, p. 116448, Mar. 2020, doi: 10.1016/j.jmatprotec.2019.116448.

Z. Tan, R. Xu, H. Bi, Z. Zhang, and M. Li, “Effects of potential on corrosion behavior and contact resistance of 446 stainless steel in simulated proton exchange membrane fuel cell cathode environment,” Journal of Solid State Electrochemistry, vol. 27, no. 8, pp. 1993–2003, Aug. 2023, doi: 10.1007/s10008-023-05469-y.

R. G. Tayactac and E. B. O. Ang, “A Review of Corrosion Resistance Alloy Weld Overlay Cladding Material for Geothermal Applications,” Materials Science Forum, vol. 1047, pp. 120–127, Oct. 2021, doi: 10.4028/www.scientific.net/MSF.1047.120.

A. Kumar, R. Sharma, S. Kumar, and P. Verma, “A review on machining performance of AISI 304 steel,” Mater Today Proc, vol. 56, pp. 2945–2951, Jan. 2022, doi: 10.1016/J.MATPR.2021.11.003.

G. S. Was and S. Ukai, “Austenitic Stainless Steels,” in Structural Alloys for Nuclear Energy Applications, Elsevier, 2019, pp. 293–347. doi: 10.1016/B978-0-12-397046-6.00008-3.

Sumarji, “Studi Perbandingan Ketahanan Korosi Stainless Steel Tipe Ss 304 Dan Ss 201 Menggunakan Metode U-Bend Test Secara Siklik Dengan Variasi Suhu Dan Ph,” ROTOR, vol. 4, no. 1, pp. 1–8, 2011.

V. Ayu, S. Institut, T. Adhi, T. Surabaya, and E. Widodo, Analisis Kekuatan Tarik dan Karakteristik XRD pada Material Stainless Steel dengan Kadar Karbon yang Berbeda. 2017. [Online]. Available: https://www.researchgate.net/publication/324434551

Aditia, Nurdin, and A. S. Ismy, “Analisa Kekuatan Sambungan Material AISI 1050 dengan ASTM A36 dengan Variasi Arus pada Proses Pengelasan SMAW,” Journal of Welding Technology, vol. 1, no. 1, pp. 1–4, 2019.

I. Saputra, “Micro structure analysis of 304 stainless steel in the TC-ISSF installation,” in 2018, Proceedings of the Research Presentation and Activities of the Radioactive Waste Technology Center, 2019, pp. 1–34. Accessed: Jun. 24, 2024. [Online]. Available: https://inis.iaea.org/search/search.aspx?orig_q=RN:51070203

V. A. Setyowati, D. E. Wahyu, R. Widodo, and T. Surabaya, “Analisis Kekuatan Tarik Dan Karakteristik Xrd Pada Material Stainless Steel Dengan Kadar Karbon Yang Berbeda,” Seminar Nasional Sains dan Teknologi Terapan V , pp. 57–62, 2017.

ASTM Internasional, “Designation: E8/E8M − 13a Standard Test Methods for Tension Testing of Metallic Materials 1,” 2013. doi: 10.1520/E0008_E0008M-13A.

P. Organek, B. Gosowski, and M. Redecki, “Relationship between Brinell hardness and the strength of structural steels,” Structures, vol. 59, p. 105701, Jan. 2024, doi: 10.1016/j.istruc.2023.105701.




DOI: http://dx.doi.org/10.30811/jowt.v6i1.5322

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

    

   

 

 Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.


Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia