Rancang Bangun Sistem Identifikasi Kesegaran Ikan Berdasarkan Citra Mata Menggunakan Support Vector Machine
Sari
Fish is one of the staple foods that is in great demand, especially in Indonesia because it has perfect protein content, this
content is obtained from good quality or fresh fish. The nutritional composition of fish consists of 18.13% protein, 1.90% fa t, 1.03% ash
and 78% water. Fish is a type of staple food that is easy to process without any special handling. The quality and selling value of fish is
highly dependent on the quality of the freshness of the fish. A good selection of fish is to choose the type of fish that is still fresh. The
quality of fish that is suitable for consumption can be seen in the color of the fish skin, fish eyes, gills and meat texture. However, there
are still many consumers who do not understand how to choose the quality of the freshness of the fish. so that it has an impact on health
even if consuming rotten fish can cause poisoning to digestive disorders. Based on these problems, a solution that can be app lied to the
selection of fresh fish was taken, namely by designing a Fish Freshness Identification System Based on Eye Image. The implementation of
this system is done by taking pictures of fish in jpeg format, then cropping and resizing to get the pixel size. after that the calculation is
carried out through the conversion process of cropping fish heads from grayscale images into binary images. The process to get the value,
starting with the extraction of the RGB image to form a vector value. The result of feature extraction is then classified using the Support
Vector Machine method. This study aims to identify the freshness of fish based on eye image. so that it can make it easier for users to
distinguish the freshness of fish. In testing this system, it produces an overall accuracy rate of 73%. Based on these results, it can be
concluded that the Support Vector Machine algorithm has succeeded in identifying the freshness of fish.
Keywords — Support Vector Machine, RGB, Identifikas, Citra Mata
Teks Lengkap:
PDFReferensi
Jusrawati, 2021. Karakteristik Mutu Secara Kimiawi Ikan Layang
(Decapterus Macrosoma) Segar Menggunakan Teknik Penanganan
Perbandingan Air Dan Es Serta Lama Penyimpanan,repository
.unhas.ac.id/id/eprint/4689/2/L23116515_skripsi%20I%20%26%20II
Astawan, M., 2019. Penanganan dan Pengolahan Hasil Perikanan
di Atas Kapal. (Modul) Prinsip Dasar Teknologi Pengolahan Hasil
Perikanan 1–338.
Sholihin, M., 2021. Identifikasi Kesegaran Ikan Berdasarkan Citra
Insang dengan Metode Convolution Neural Network. JATISI
(Jurnal Teknik Informatika dan Sistem Informasi) 8, 1352–1360.
doi:10.35957/jatisi.v8i3.939
Ningrum, H.C.S., 2018. Perbandingan Metode Support Vector
Machine (SVM) Linear, Radial Basis Function (RBF), Polinomial
Kernel dalam Klasifikasi Bidang Studi Lanjut Pilihan Alumni UII.
Tugas Akhir Statistika Universitas Islam Indonesia 1–90.
Khairuddin, K., Yamin, M., Kusmiyati, K., 2021. Analisis
Kandungan Logam Berat Tembaga (Cu) pada Bandeng (Chanos
chanos forsk) yang Berasal dari Kampung Melayu Kota Bima.
Jurnal Pijar Mipa 16, 97–102. doi:10.29303/jpm.v16i1.2257
Giovedy, V.S., Lasmanawati, E., Setiawati, T., 2020.
PENGETAHUAN IBU RUMAH TANGGA TENTANG IKAN DI
DESA BANYUSARI. Media Pendidikan, Gizi, dan Kuliner 9.
doi:10.17509/boga.v9i1.24322
Maulida, 2020. TEKNIK PENGUMPULAN DATA DALAM
METODOLOGI PENELITIAN. Darussalam 21, 71–78.
Nugroho, A.S., Umar, R., Fadlil, A., 2021. KLASIFIKASI
BOTOL PLASTIK MENGGUNAKAN MULTICLASS
SUPPORT VECTOR MACHINE. Jurnal Khatulistiwa Informatika
doi:10.31294/jki.v9i2.11058
Devella, S., Yohannes, Y., Putra, C.A., 2021. Penggunaan Fitur
Saliency-SURF untuk Klasifikasi Citra Sel Darah Putih dengan
Metode SVM. JATISI (Jurnal Teknik Informatika dan Sistem
Informasi) 8, 1998–2009. doi:10.35957/jatisi.v8i4.1547
Saputra, A.D., Jayanta, Pangaribuan, Ing.A.B., 2020. Klasifikasi
Alfabet Bahasa Isyarat Indonesia (BISINDO) Dengan Metode
Template Matching dan K-Nearest Neighbors (KNN). Seminar
Nasional Mahasiswa Ilmu Komputer dan Aplikasinya
(SENAMIKA) 1, 747–760
Refbacks
- Saat ini tidak ada refbacks.
Jurnal Teknologi Rekayasa Informasi dan Komputer - Politeknik Negeri Lhokseumawe is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
©2021 All rights reserved | P-ISSN: 2581-2882 | E-ISSN: 2797-1724