Finite Element Analysis of Magnesium AZ31B Materials for Biodegradable Bone Screw Application

Irza Sukmana

Abstract


The bone implant functions for the load bearing and aims to support the integration of fractured bone. It may increase the strength of the broken bones and also at the same time support bone regeneration and integration. Bone screws are usually attached to the implant plate and bonded to the surface of the fractured bone by screwing the bone screws through the bone structure. In its implementation, a non-degradable implant needs a second operation for the patient to take out the implant. Currently, biomedical researchers are trying to produce bone implants that are degradable or bioresorbable materials. Magnesium (Mg) alloy is a potential biomaterial for bone implants, as Mg is a degradable material. Mg is one of the elements needed and harmless to the human body. This study focuses on finite element analysis (FEA) for the bone screw design of Magnesium alloy that has been well known as a potential candidate for biodegradable bone screw and plate application. The three dimensions (3D) design was done by using Solidworks software, and finite element analysis was performed using ANSYS by calculating the moment, pullout, and force bending received by bone screws. The validatation results of the design carried out with several analytical tests before the production of bone screws is proposed. The FEA simulation of bone screws pullout has a total deformation of 0.028 mm and a von Mises stress of 134.25 MPa for a pullout load of 1100 N. The bone screws torsion with a torque of 883 N.mm, the total deformation is 0.988 mm and for bone screws bending with a total deformation of 5,4352 mm has a von Mises stress of 25.706 MPa. AZ31B bone screws, based on the design, are safe and capable of handling the maximum load and deformation during the implantation. In vitro biocompatibility and in vivo studies is needed for further assessment of the design.

Keywords


Magnesium AZ31B, Bone Screws, FEA, Pullout, Torsion, Bending.

Full Text:

PDF

References


Stahel, P.F., Alfonso, N.A., Henderson, C., Baldini, T. Introducing The “ Bone-Screw-Fastener ” For Improved Screw Fixation In Orthopedic Surgery : A Revolutionary Paradigm Shift, Patient Saf Surg. 11 1–8. Doi:10.1186/S13037-017-0121-5. November 2017.

Tilton, M., Armstrong, A.D, Wee, H., Hast, M.W., Manogharan, G., Lewis Gs. Finite element-predicted effects of screw configuration in proximal humerus fracture fixation. Journal of Biomechanical Engineering [Internet]. 2020 [cited 2021 Mar 25];142. Available from: https://doi.org/10.1115/1.4045907. March 2021.

Chandra, G., & Pandey, A. (2021). Design and analysis of biodegradable buttress threaded screws for fracture fixation in orthopedics: a finite element analysis. Biomedical Physics & Engineering Express, 7(4), 045010.

Wang, S., Wang, D., Lin, Y., Li, X. Biomechanical Analysis Of Femoral Fixation With A New Compression Plate Using Finite Element Method During Stair Climbing. Key Engineering Materials Submitted: 2015-11-24 Issn: 1662-9795, Vol. 693, Pp 297-305 Accepted: 2015-12-31.Doi:10.4028/Www.Scientific.Net/Kem.693.297 Online: 2016-05-20 2016 Trans Tech Publications, Switzerland. 2016.

Ibrahim, F., & Sukmana, I. (2021). Application of magnesium alloys in orthopedic implant. Jurnal Polimesin, 19(2), 182-187.

Catalog Depuy Synthes Instrument And Implants. 2011 http://synthes.com accessed on Tuesday, June 15, 2021 at 16.00 WIB.

Emzain, Z. F., Huang, S. C., Yang, Y. S., & Qosim, N. Design and Analysis of a Dynamic Splint Based on Pulley Rotation for Post-Stroke Finger Extension Rehabilitation Device. Jurnal Rekayasa Mesin, 11(3), 477-485. 2020.

Emzain, Z. F., Amrullah, U. S., & Mufarrih, A. M. (2020). Analisis elemen hingga untuk siklus berjalan pada model prostetik lentur pergelangan kaki. Jurnal Polimesin, 18(2), 91-98.

Suhendrianto, S., Zuhri, S., Tarigan, H. A. N., & Asbar, A. (2021). Konsep desain dan perbaikan produk Ankle Foot Orthosis menggunakan metode kansei engineering. Jurnal Polimesin, 19(2), 140-146.

Lee, E. S., Goh, T. S., Heo, J. Y., Kim, Y. J., Lee, S. E., Kim, Y. H., & Lee, C. S. Experimental evaluation of screw pullout force and adjacent bone damage according to pedicle screw design parameters in normal and osteoporotic bones. Applied Sciences, 9(3), 586. 2019.

Witte, F. The history of biodegradable magnesium implants: A review. Acta Biomater. 6, 1680–1692. 2008.

Biswas, J. K., Sahu, T. P., Rana, M., Roy, S., Karmakar, S.K., Majumder, S., & Roychowdhury, A. Design factors of lumbar pedicle screws under bending load: A finite element analysis. Biocybernetics and Biomedical Engineering. doi:10.1016/j.bbe.2018.10.003. January 2019.

Tetteh, E., Mccullough, M.B. Impact Of Screw Thread Shape On Stress Transfer In Bone: A Finite Element Study, Computer Methods In Biomechanics And Biomedical Engineering, Pp. 1-6, 2020.

Zain, N., Daud, R., Aziz, N., Ahmad, K., Ismail, A., Izzawati, B. Stress Analysis Prediction On Screw Orthopedic Implant In Trabecular Bone, Materials Today: Proceedings, Vol. 16, Pp. 1838-1845, 2019.

Wang, W., Baran, G.R., Garg, H., Betz, R.R., Moumene, M., Cahill, P.J. The benefits of cement augmentation of pedicle screw fixation are increased in osteoporotic bone: a finite element analysis. Spine Deform;2(4):248–59. 2017.

Mau, J. R., Hawkins, K. M., Woo, S. L. Y., Kim, K. E., & Mccullough, M. B. Design of a new magnesium-based anterior cruciate ligament interference screw using finite element analysis. Journal of Orthopaedic Translation, 20, 25-30. 2020.

Tejszerska, D., Świtoński, E., & Gzik, M . (2011) Biomechanics of the human locomotor system. Publishing house.

Wilkie, J., Docherty, P. D., & Moller, K. Stripping Torque Model for Bone Screws. 11th IFAC Symposium on Biological and Medical Systems BMS 2021 Ghent, Belgium, 19-22 September 2021. Volume 54, Issue 15, 2021, Pages 442-447. 2021.

Silva, A. S., Mendes, J. M., Araujo, T., Aroso, C., & Barreiros, P. Comparison of Mechanical Resistance to Maximal Torsion Stress in Original and Nonoriginal or Compatible Prosthetic Implant Screws: An In Vitro Study. International Journal of Dentistry, 2021.

Keshtiban, P.M., Regbat, M., & Keshtiban, M.M. An investigation of tensile strength of Ti6Al4V titanium screw inside femur bone using finite element and experimental tests. Journal of Computational Applied Mechanics, 51(1), 91-97. 2020.

Xu, M., Yang, J., Lieberman, I. H., & Haddas, R. Finite element method-based study of pedicle screw–bone connection in pullout test and physiological spinal loads. Medical engineering & physics, 67, 11-21. 2019.

Lee, E. S., Goh, T. S., Heo, J. Y., Kim, Y. J., Lee, S. E., Kim, Y. H., & Lee, C. S. Experimental evaluation of screw pullout force and adjacent bone damage according to pedicle screw design parameters in normal and osteoporotic bones. Applied Sciences, 9(3), 586. 2019.

Moldovan, F., & Bataga, T. Torque Control during Bone Insertion of Cortical Screws. Procedia Manufacturing, 46, 484-490. 2020.




DOI: http://dx.doi.org/10.30811/jpl.v20i2.2961

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .

 

Alamat Surat :

Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia