Sintesa dan Karakterisasi Hibrid Kitosan-Limbah Kulit Pisang dengan Berpenguat Lignin Sebagai Pembalut Luka Antibakterial
Sari
Abstrak— Penyembuhan luka selama ini memerlukan waktu yang relatif lama dan bahkan memerlukan metode penyembuhan yang lebih kompleks untuk mengatasi luka yang lebih parah pada kulit. Oleh karena itu, berbagai penelitian dilakukan sebagai upaya pendekatan terhadap bidang teknik jaringan guna mengatasi efek luka dalam jangka waktu yang lebih cepat. Penelitian ini bertujuan untuk membuat pembalut luka yang dikarakterisasi menggunakan uji Fourier Transform Infrared (FTIR), uji Scanning Electron Microscopy (SEM), uji Swelling Properties terhadap air dengan waktu (0, 24, dan 48 jam), dan uji antibakteri menggunakan bakteri Escherichia coli dan Staphylococcus aureus. Limbah kulit pisang yang digunakan dimasukkan kedalam kitosan sebagai pengisi matriks dengan konsentrasi berbeda (0, 2, 4, 6, 8 dan 10% wt). Pembalut luka dibuat dengan mencampur kitosan dan serbuk kulit pisang serta ditambahkan gliserol sebagai plasticizer. Hasil dari FTIR pada konsentrasi 10% wt menunjukkan bahwa adanya interaksi antara kulit pisang dengan kitosan pada pita serapan 3165.828 cm-1. Pada SEM struktur morfologi sampel terbaik pada 10% wt menujukkan kenampakan ikatan antarmuka yang bagus. Penambahan kulit pisang sebagai lignin menurunkan tingkat pembengkakan (swelling) terhadap air pada pembalut luka. Hasil uji antibakteri menunjukkan aksi sinergis dengan aktivitas tertinggi pada 10%wt. Selain itu, Staphylococcus aureus adalah strain yang paling sensitif yang tercatat pada pembalut luka.
Kata kunci— Antibakteri, Kitosan, Serbuk Kulit Pisang, Pembalut Luka.
Abstract— Wound healing has taken a relatively long time and even requires more complex healing methods to deal with more severe wounds on the skin. Therefore, various studies are carried out as an approach to the field of network engineering to overcome the effects of injury in a faster period. This study aims to make wound dressing characterized by the Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), Swelling Properties for water with time (0, 24 and 48 hours), and antibacterial tests using Escherichia coli bacteria and Staphylococcus aureus. Banana skin waste used was put into chitosan as a matrix filler with different concentrations (0, 2, 4 6, 8 and 10% wt). The wound dressing is made by mixing chitosan and banana peel powder and adding glycerol as a plasticizer. The results of FTIR at a concentration of 10% wt showed that there was an interaction between banana peel and chitosan on the absorption band 3165.828 cm-1. In SEM the best sample morphology structure at 10% wt shows a good interface interface. Addition of banana peel as lignin decreases the level of swelling of water in wound dressing. Antibacterial test results showed synergistic action with the highest activity at 10% wt. In addition, Staphylococcus aureus is the most sensitive strain recorded in wound dressing.
Keywords— Antibacterial, Banana Peels Powder, Chitosan, Wound Dressing
Teks Lengkap:
PDFReferensi
Kamel, Nagwa A., Salwa L.A.E., Neveen, M.S. 2017. Chitosan/banana peel powder nanocomposites for wound dressing application: Preparation and characterization. Materials Science and Engineering C. Vol. 72, Hal. 543-550
Guarino, V.C., Altobelli, T.R., Ambrosio, L. 2015. Degradation Properties and Metabolic Activity of Alginate and Chitosan Polyelectrolytes for Drug Delivery and Tissue Engineering Applications. AIMS Materials Science. Vol. 2, No. 4, Hal. 497-502.
Güneş, Seda, Funda, Tıhmınlıoğlu. 2017. Hypericum perforatum Incorporated Chitosan Films as Potential Bioactive Wound Dressing Material. International Journal of Biological Macromolecules.
Dodane, Valérie and Vinod D. Vilivalam. 1998. Pharmaceutical applications of chitosan. PSTT. Vol. 1, No. 6.
Kumar, Majeti N.V. Ravi. 2000. A review of chitin and chitosan applications. Reactive & Functional Polymers. Vol. 46, Hal. 1-27.
Tanaka, Yoshinori, Shin-ichiro Tanioka, Miyoko Tanaka, Takahiko Tanigawa, Yukisato Kitamura, Saburo Minami, Yoshiharu Okamoto, Mariko Miyashitas and Masanobu Nanno. 1997. Effects of chitin and chitosan particles on BALB/c mice by oral and parenteral administration. Biomoterials. Vol. 8, No.5, Hal. 91-595.
Ma, Ye, Lian Xina, Huaping Tana, Ming Fana, Jianliang Lia, Yang Jia, Zhonghua Ling, Yong Chen, Xiaohong Hu. 2017. Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing. Materials Science & Engineering C. Vol. 81, Hal. 522-531.
Tan, Huaping, Constance R. Chu, Karin A. Payne, Kacey G. Marra. 2009. Injectable in Situ Forming Biodegradable Chitosan-Hyaluronic Acid Based Hydrogels for Cartilage Tissue Engineering. Biomaterials. Vol. 30, Hal. 2499-2506.
Ishihara, Mayuki, Kuniaki Nakanishi, Katsuaki Ono, Masato Sato, Makoto Kikuchi, Yoshio Saito, Hirofumi Yura, Takemi Matsui, Hidemi Hattori, Maki Uenoyama, Akira Kurita. 2002. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials. Vol. 23, Hal. 833-840.
Chen, Long, Chang-yu Tang, Nan-ying Ning, Chao-yu Wang, Qiang Fu, Qin Zhang. 2009. Preparation and Properties of Chitosan/Lignin Composite Films. Chinese Journal of Polymer Science. Vol. 27, No. 5, Hal. 739-746.
Matsushita, Yasuyuki, Saori Wada, Kazuhiko Fukushima, Seiichi Yasuda. 2006. Surface characteristics of phenol-formaldehyde-lignin resin determined by contact angle measurement and inverse gas chromatography. Industrial Crops and Products. Vol. 23, Hal. 115-121.
Popa, Valentin I., Adina-Mirela Căpraru, Silvia Grama And Teodor Măluţan. 2011. Nanoparticles Based on Modified Lignins With Biocide Properties. Cellulose Chemistry and Technology. Vol. 45, No. 3-4, Hal. 221-226.
Bahri, Samsul. 2015. Pembuatan Pulp dari Batang Pisang. Jurnal Teknologi Kimia Unimal.Vol. 4, No. 2, Hal. 36-50.
Wina, Elizabeth. 2001. Tanaman Pisang Sebagai Pakan Ternak Ruminansia. Balai Penelitian Ternak. Wartazoa, Vol. 11, No. 1.
Pereira, A., & Maraschin, M. 2015. Banana (Musa spp) from peel to pulp: Ethnopharmacology, source of bioactive compounds and its relevance for human health. Journal of Ethnopharmacolocy. Vol. 160, Hal. 149-163.
Rangan, A., Manjula, V.M., Rajendran, M.T., Satyanarayana, G.K., Reghu, M. 2017. Novel method for the preparation of lignin-rich nanoparticles from lignocellulosic fibers. Industrial Crops and Products, Vol. 103, Hal. 152-160.
Vu, H. T., Scarlett, C. J., & Vuong, Q. V. 2018. Phenolic Compounds Within Banana Peel and Their Potential Uses: A Review. Journal of Functional Foods. Vol. 40, Hal. 238-248.
C. Deng, L. He, M. Zhao, D. Yang, Y. Liu. 2007. Biological properties of the chitosan-gelatin sponge wound dressing. Carbohydr. Polym. 69 (83-589).
Brzeski, MM. 1982. Concept of Chitin/Chitosan Isolation from Antarctic Krill (Euphausia Superba) Shells on A Technique Scale. In: Hirano S, Tokura S (Eds) Proceedings of the 2nd International Conference on Chitin and Chitosan. The Japan Society of Chitin and Chitosan, Sapporo, Japan, pp 15-29.
Alimuniar A, Zainuddin R. 1992. An Economical Technique for Producing Chitosan. In: Brine CJ, Sanford PA, Zikakis JP (Eds) Advances in Chitin and Chitosan. Elsevier Applied Science, London and New York, pp 627-632.
Li, Q, Dunn ET, Grandmaison EW, Goosen MFA. 1992. Applications and Properties of Chitosan. J Bioactive Compatible Polym. 7:370-397.
Islam, MM, Masum SM, Rahman MM, Ashraful M, Molla I, Shaikh AA, Roy SK. 2011. Preparation of Chitosan from Shrimp Shell and Investigation of Its Properties. Int J Basic Appl Sci. 11(1):116-130.
Hossein T, Mehran M, Seyed MRR, Amir ME, Farnood SSJ. 2008. Preparation of Chitosan from Brine Shrimp (Artemiaurmiana) Cyst Shells and Effects of Different Chemical Processing Sequences on The Physicochemical and Functional Properties of The Product. Molecules 13:1263-1274.
Martino AD, Sittinger M, Risbud MV. 2005. Chitosan: A Versatile Biopolymer for Orthopedic Tissue Engineering. Biomaterials. 26:5983-5990.
Khan T, Peh K, Ch’ng HS. 2002. Reporting Degree of Deacetylation Values of Chitosan: The Influence of Analytical Methods. J Pharm Pharmaceut Sci 5(3):205-212.
H. Zheng, L. Wang. 2013. Banana peel carbon that containing functional groups applied to the selective adsorption of Au (III) from waste printed circuit boards. Soft Nanosci. Lett. 3 (2)29-36.
R.S.D. Castro, et al. 2011. Banana peel applied to the solid phase extraction of copper and lead from river water: preconcentration of metal ions with a fruit waste. Ind. Eng. Chem. Res. 50 (6) 3446-3451.
Y. Zhang, et al. 2008. Physicochemical characterization and antioxidant activity of quercetinloaded chitosan nanoparticles. J. Appl. Polym. Sci. 107 (2) 891-897.
Bodnar, M., Hartmann, J. F., Borbely, J. 2005. Preparation and Characterization of Chitosan-Based Nanoparticles. Biomacromolecules 2005(6): 2521-2527.
Moura, M. R., & Aouada, F. A. 2008. Preparation of Chitosan Nanoparticles Using Methacrylic Acid. Journal of Colloid and Interface Science. 321(2):477-483.
H.K. No, et al., Antibacterial activity of chitosans and chitosan oligomers with different molecular weights, Int. J. Food Microbiol. 74 (1) (2002) 65-72.
J. Šimůnek, et al., Effect of chitosan on the growth of human colonic bacteria, Folia Microbiol. 51 (4) (2006) 306-308.
Y.C. Chung, et al., Relationship between antibacterial activity of chitosan and surface characteristics of cell wall, Acta Pharmacol. Sin. 25 (2004) 932-936.
S.B. Oyeleke, Microbial assessment of some commercially prepared yoghurt retailed in Minna, Niger State, Afr. J. Microbiol. Res. 3 (5) (2009) 245-248.
C.S. Chen, W.Y. Liau, G.J. Tsai, Antibacterial effects of N-sulfonated and N-sulfobenzoyl chitosan and application to oyster preservation, J. Food Prot. 61 (9) (1998) 1124-1128.
Papineau, A.M, dkk. 1991. Antimicrobial Effect of Water-Soluble Chitosans With High Hydrostatic Pressure. Food Biotechnol. 5 (1):45-57.
S.W. Fang, C.F. Li, D.Y.C. Shih, Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat, J. Food Prot. 57 (2) (1994) 136-140.
A. El Ghaouth, et al., Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits, Phytopathology 82 (4) (1992) 398-402.
G.J. Tsai, et al., Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation, Fish. Sci. 68 (1) (2002) 170-177.
Huang, J.C. 2002. Carbon Black Filled Conducting Polymers and Polymer Blends. Adv. Polym. Technol. 21(4):299-313.
M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng. R. Rep. 28 (1) (2000) 1-63.
T.H. Emaga, et al., Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties, Bioresour. Technol. 99 (10) (2008) 4346–4354.
N. Pitak, S.K. Rakshit, Physical and antimicrobial properties of banana flour/chitosan biodegradable and self sealing films used for preserving Fresh-cut vegetables, LWT-Food Sci. Technol. 44 (10) (2011) 2310-2315.
P. Battaglini Franco, L.A. de Almeida, R.F.C. Marques, G. Brucha, M.G.N. Campos, Evaluation of antibacterial activity of chitosan membranes associated to unripe banana peel, Mater. Sci. Forum 869 (2016) 859-863.
Refbacks
- Saat ini tidak ada refbacks.
##submission.copyrightStatement##
Prosiding Seminar Nasional Politeknik Negeri Lhokseumawe is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
© 2017 All rights reserved |Seminar nasional Politeknik Negeri Lhokseumawe p-ISSN:2598-3954.
.