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Abstract 

Predicting the mechanical properties of stainless steel, such as 

Yield Strength (YS), Ultimate Tensile Strength (UTS), and 

Elongation (EL), requires many input variables, such as chemical 

composition, type of heat treatment, heating duration, and cooling 

method. However, the complexity and number of these variables 

can increase processing time and reduce model accuracy. This 

study aims to explore the impact of selecting the most influential 

input variables to improve prediction accuracy. It compared two 

feature selection techniques to enhance prediction accuracy: 

Recursive Feature Elimination (RFE), which systematically 

excludes less relevant features, and Information Gain (IG), which 

evaluates each variable's contribution to predictions. Both 

techniques were implemented using the random forest algorithm, 

chosen for its robustness in handling large datasets and its ability 

to capture complex interactions between variables. Parameter 

optimization was performed using a grid search. The analysis 

showed that the RFE-based model out performed both the IG-

based model and the model without feature selection. In 

predicting YS, RFE identified 13 out of 21 influential variables, 

achieving a Mean Absolute Error (MAE) of 9.91, Root Mean 

Square Error (RMSE) of 14.20, and R-squared value of 0.89. For 

UTS, RFE identified 8 out of 21 variables, with an MAE of 

12.89, RMSE of 16.97, and R-squared of 0.97. In predicting EL, 

RFE identified 14 out of 21 variables, with an MAE of 3.82, 

RMSE of 6.10, and an R-squared value of 0.85. The high R-

squared values (> 0.85) across all properties indicate the model’s 

strong predictive capabilities, supporting its practical use in 

stainless steel property prediction. 
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1 Introduction 
Stainless steel is a type of steel that is resistant to corrosion, 

oxidation, and other chemical reactions thanks to its additional 

metal content, especially chromium. Chromium forms an oxide 

layer that protects the steel surface, resulting in rust-resistance [1]. 

Stainless steel is commonly used in various construction projects, 

such as multi-story building structures, bridges, and household 

appliances [2]. In the construction field, stainless steel is often 

used to build structures that are resistant to corrosion and 

mechanical loads. Its tensile performance is crucial for ensuring 

adequate structural strength and durability in a variety of projects, 

including bridges and multistory buildings [3]. A good 

understanding of the tensile strength of stainless steels can help 

reduce the risk of premature material failure [4]. According to 

Morini (2019) [5], knowledge of the mechanical properties of a 

material is not only necessary to prevent premature failure of 

machines or industrial components but also for user safety aspects. 

The tensile strength of stainless steel is influenced by its 

microstructure, chemical elements, and heat-treatment temperature 

[6] [7]. Many complex factors influence the mechanical properties 

of stainless steel and are nonlinear, such as the chemical 

composition of chromium, nickel, and molybdenum, which can 

have a complex and nonlinear impact on the mechanical properties 

of stainless steel. Changes in the percentage of these chemical 

elements can have a disproportionate effect on the tensile strength, 

such as the Yield Strength (YS), Tensile Strength (TS), and 

Elongation (EL) [8], [9]. Heat-treatment processes, such as 

controlled heating and cooling, play a key role in changing the 

microstructure and mechanical properties [10]. Meanwhile, the 

austenitic or ferritic structure of stainless steel can provide 

different mechanical characteristics, including tensile properties 

[11]. Based on the complexity of the influence of chemical 

elements and heat treatment temperature on the mechanical 

properties of stainless steel, an effective and efficient method is 

required to comprehensively understand the mechanical properties 

of stainless steel. 

The rapid development of computer technology in the field of 

materials science has encouraged experts and researchers to 

develop computational approaches for analyzing and solving 

various problems in the field of materials [12]. Machine learning 

is a method that uses data and algorithms to imitate the way 

humans learn. Machine learning allows computers to make 

decisions or predictions based on patterns found in the data. This 

method is one of the most popular topics in material science. This 

can be seen on the web of science, which states that almost 2000 

papers were published on this topic in 2020 alone, compared to 

only approximately 400 papers in 2017 [13]. In materials science, 

machine learning is widely used to model material properties, 

design new materials, and optimize their mechanical properties. In 

models predicting the mechanical properties of materials such as 

alloy steel, it is generally necessary to select algorithms, set model 

parameters, and select features. Feature selection is the process of 

selecting the most relevant and important subset of features from a 

set of available features in a dataset. The main goal of feature 

selection is to improve model performance and computational 

efficiency by reducing data complexity without sacrificing 

accuracy [14]. By selecting the most informative features, the 

learning process can become more efficient and the model can 

overcome problems such as overfitting. Recursive Feature 

Elimination (RFE) and Information Gain (IG) are two methods 

used to select the input variables that have the most influence on 

the output variables [15]. For predicting the mechanical properties 

of stainless steel, a feature selection method is most appropriate 

for selecting the chemical elements and heat treatments that are 

most relevant to the mechanical properties of stainless steel. 

Understanding the influence of feature selection on the prediction 

of steel tensile strength has been the main focus of many previous 

studies, such as Jiang et al. (2020) [16], who conducted a 

comprehensive study on the use of RFE on a large steel wire 

dataset. Their findings highlight that RFE not only improves the 

prediction accuracy but also significantly reduces the risk of 

overfitting. This research confirms the success of RFE as an 

effective feature selection tool for dealing with the complexity of 

large and complex material datasets. In another study [17] on the 

prediction of the fatigue strength of alloy steels, it was found that 
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information gain makes a valuable contribution to improving the 

accuracy of fatigue strength prediction of alloy steels. This method 

proved effective in reducing the dimensionality of complex 

mechanical property datasets by focusing on features that have a 

significant impact on the fatigue strength of alloy steel. Ruiz et al. 

(2020) [18] investigated the use of RFE with various machine 

learning algorithm models in predictive modeling of the tensile 

strength of steel bars produced in an electric arc furnace. In this 

study, there were 97 features in the dataset during the steel-

processing process. The research results show that RFE with 

random forest can determine the features that are most relevant to 

the output variable and provide the most accurate prediction 

results compared to other algorithm combinations. Based on the 

results of previous research, feature selection is an important step 

in improving prediction models for material mechanical 

properties. Therefore, this study was designed to compare the 

effectiveness of two feature selection methods, Recursive Feature 

Elimination (RFE) and Information Gain (IG), combined with the 

Random Forest algorithm to predict the mechanical properties of 

stainless steel. It is expected that the results of this study will 

provide a strong foundation for understanding the performance 

comparison between RFE and IG in the context of mechanical 

property prediction. These findings are expected to guide the 

selection of the most appropriate feature selection method to 

obtain optimal predictions of the mechanical properties of 

stainless steel. 

2 Research Methods 

This study compares two feature selection techniques 

combined with a random forest algorithm predictive model to 

predict the mechanical properties of stainless steel. Generally, to 

predict the mechanical properties of stainless steel, such as the 

Yield Strength (YS), Ultimate Tensile Strength (UTS), and 

Elongation (EL), many input variables are required, such as 

chemical elements, type of heat treatment, length of heating time, 

and cooling method. This large and complex number of variables 

can result in long processing times and reduce the accuracy of the 

prediction model. Therefore, this research compares two feature 

selection techniques commonly used in machine learning 

methods: Recursive Feature Elimination (RFE) and Information 

Gain (IG). The goal was to improve the prediction of the 

mechanical properties of stainless steel. The developed model was 

evaluated using three evaluation metrics that are often used to 

predict the mechanical properties of alloy steels [8], [17], and 

[19]: Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), and R-squared. The model was created using the Python 

programming language and run on the Google Colab framework. 

The stages of this research are shown in Fig. 1, which illustrates 

the stages in the analysis and development of a prediction model 

for the mechanical properties of stainless steel. 

 

 
Fig. 1. Research scheme. 

2.1 Datasets 

The dataset used in this study was the tensile test results of 

several types of Austenitic Stainless Steel (ASS), such as SUS 

304, SUS 316, SUS 321, SUS 347, and NCF 800H. This dataset 

consists of 2180 samples with austenitic stainless steel mechanical 

properties, alloy chemical elements, heat treatment temperatures, 

and cooling methods. The data obtained from the Creep Data 

Sheet of Steel (No. 4B, 5B, 6B, 14B, 15B, 26B, 27B, 28B, 32A, 

42, and 45), which is a data source from NIMS MatNavi and 

BSCC High Temperature Data from the British Steelmakers Creep 

Committee [20]. The data were collected by the Material 

Algorithm Project (MAP) [21], which is a project carried out by 

the University of Cambridge that can be used for research and 

educational purposes. 

2.2 Data Preprocessing 

Data preprocessing is an initial stage in data analysis that aims 

to clean, prepare, and organize raw data so that they can be used 

more effectively in statistical analysis or modeling [22]. At this 

stage, the identification and handling of missing or invalid values 

in the dataset are carried out, such as replacing missing values, 

deleting irrelevant rows or columns, handling significant outliers, 

and changing the data format to suit analysis needs, such as by 

normalizing the data. Data normalization is a data preprocessing 

technique that aims to change the data scale to the same or 

equivalent range from 0 to 1 [23]. Data normalization was 

performed using the MinMaxScaler method. This normalization 

method is the most commonly used method in machine learning, 

and can be calculated using Eq. 1. 
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where   is the original data, while [24]. 

2.3 Random Forest Modeling with Feature Selection 

At this stage, the random forest model is first trained using all 

dataset features to obtain an initial picture. Next, hyperparameter 

optimization is carried out with a grid search to find the best 

parameters in the Random Forest algorithm, which will be used to 

retrain the model. To increase the reliability of the model 

evaluation, K-fold cross-validation was applied with K = 10. The 

use of K-fold cross-validation with K = 10 provides a more stable 

estimate of model performance, minimizing the possibility of bias 

from one test that depends on partition-specific data [8]. After 

obtaining the best parameters, the next step is to apply two feature 

selection methods: Recursive Feature Elimination (RFE) and 

Information Gain (IG). In general, RFE works in the following 

ways: (1) initialize the machine learning model with all the 

features in the dataset, (2) calculate the importance of each feature 

in the model, (3) delete features that are not significant to the 

output variable, and (4) repeat steps 2 and 3 until the desired 

number of features is reached [25]. IG identifies features that have 

high informativeness regarding the target mechanical properties. 

IG can be calculated using Eq. 2. 
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Where S is a dataset, A is an attribute, |Si| is a subset of the 

dataset S, where the value of attribute A is equal to the ith value, 

|S| is the number of all data samples, and entropy (Si) is the 

entropy of the subset   , which has an attribute value A equal to 

the i value [26]. 

2.4  Model Evaluation 

Model evaluation is the process of assessing the performance 

of a machine learning model using certain metrics or indicators. 

The goal of model evaluation is to understand the extent to which 

the model can generalize and make accurate predictions on never-
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before-seen data [27]. The random forest model with the best 

combination of feature selection was evaluated through external 

testing using new data. The results of this external testing were 

calculated using evaluation metrics such as the Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), and R-squared 

(R2). The selection of these three metrics is designed to provide 

holistic and comprehensive information regarding the performance 

of models predicting the mechanical properties of alloy steels. 

This evaluation metric has also been used in previous research on 

predicting the mechanical properties of alloy steels [8], [14], and 

[23]. MAE provides an understanding of overall prediction 

accuracy; RMSE places emphasis on handling large errors; and R-

squared provides an idea of the extent to which the model is able 

to explain variations in mechanical property data. By using these 

three metrics, model evaluation can be better carried out from 

various perspectives relevant to research goals and practice in the 

field. Model evaluation metrics can be calculated using the Eq. 3-

Eq. 5 [8]: 

1. Mean Absolute Error (MAE) 
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where   is the index of the data sample,   is the total number 

of samples,    is the actual value of the i-th data point, and    
is the value predicted by the model for the i-th data point. 

2. Root Mean Square Error (RMSE) 
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where   is the number of data points used to test the model, 

 (  )  is the value predicted by the model for the i-th data 

point, and    is the actual value for the i-th data point. 

3. R-squared 
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where  (  ) is the predicted value of the dependent variable 

(  ) based on the independent variable (  ) for the i-th 

observation,  ( ̅) is the average of all predicted values  (  ) 
across all observations,    is the actual observed value of the 

dependent variable for the i-th observation,  ̅ is the average of 

all observed values    across all observations, and n is the total 

number of observations. 

The selection of the best feature selection method between 

RFE and IG was determined based on an R-squared value above 

0.8, as well as MAE and RMSE values below 20. These standards 

are used to ensure that the model achieves a high level of accuracy 

and can capture most of the data variability with minimal 

prediction error. Additionally, for the IG method, variables related 

to chemical composition and heat treatment with an information 

gain score below 0.1 are not used as inputs in the model training. 

This is because low-scoring variables tend to contribute 

insignificantly to predictions, so excluding them can reduce model 

complexity and improve the efficiency of the training process 

without sacrificing accuracy. 

3 Results and Discussion 

3.1 Datasets 

This austenitic stainless steel dataset consists of 2180 samples; 

however, after data preprocessing, there were 1194 data samples 

that had unnecessary information, such as missing and invalid 

values, so they were not used in this research. In the original 

database, there are several other features, such as melting type, 

grain size, and product shape, but these data are incomplete and 

have a very low correlation with the mechanical properties of 

stainless steel; therefore, they were not used in this study. The data 

with complete and relevant information for this research only 

amount to 986 samples consisting of independent and dependent 

variables. The independent variables are chemical elements and 

heat treatment temperature, totaling 14 variables, as shown in 

Table 1, while the dependent variables are the mechanical 

properties of stainless steel, which consist of Yield Strength (YS), 

Ultimate Tensile Strength (UTS), and Elongation (EL). 

 

Table 1. Austenitic Stainless Steel (ASS) dataset variables 

Variables Variables 

Chromium (Cr, wt%) Carbon (C, wt%) 

Nickel (Ni, wt%) Boron (B, wt%) 

Molybdenum (Mo, wt%) Phosphorus (P, wt%) 

Manganese (Mn, wt%) Sulfur (S, wt%) 

Silicon (Si, wt%) Solution treatment temperature (Ts, K) 

Niobium (Nb, wt%) Solution treatment time (ts, s) 

Titanium (Ti, wt%) Water-quenched or air-quenched 

3.2 Data Preprocessing 

This stainless steel dataset was normalized using the min–max 

scalar method. The goal was to change the values in the dataset 

such that they had a uniform range between 0 and 1. This method 

is often used in various cases of predicting the mechanical 

properties of alloy steels [23], [28], and [29], where this method 

can improve the performance of machine learning models. This is 

because normalization helps avoid large gradient problems that 

can arise when variables have different scales. Apart from that, 

basically, machine learning models pay more attention to variables 

on a larger scale and ignore variables on a smaller scale, so this 

method is very helpful in improving the performance of machine 

learning models. An illustration of normalization using the 

MinMaxScaler method as shown in Fig. 2. 

 

 
Fig. 2. Illustration of normalization using the MinMaxScaler 

method. 

 

Based on Fig. 2, changes in the variable values of the 

mechanical properties of stainless steel can be seen, where the 

UTS initially had a value range from 100 to 600, YS 100 to 300, 

and EL 20 to 120. However, after being normalized using the 

MinMaxScaler method, the values of the three properties change 

mechanically to a range of 0 to 1. This normalization process was 

also applied to chemical elements and heat treatment. At this 

stage, the stainless-steel dataset was divided into two parts: 

training and external testing. The total amount of data that had 

been cleaned reached 986 samples, which were then reduced to 50 

samples for external testing purposes. Therefore, 936 training data 

points were used. These training data are then divided back into 
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two parts: 80% for the training process and 20% for validation 

purposes. 

Before training the model, it was necessary to carry out a 

correlation analysis to determine how the relationship between 

chemical elements and heat treatment affects the mechanical 

properties of stainless steel for each variable. In this study, 

correlation analysis was performed using Pearson correlation. 

Pearson’s correlation is a statistical method used to measure the 

extent to which two variables are correlated or have a linear 

relationship with each other. This metric produces a correlation 

coefficient (r) ranging from -1 to 1. An r-value close to 1 indicates 

a perfect positive correlation, indicating that there is a positive 

linear relationship between the two variables. When one variable 

increases, the other also tends to increase. The r value is close to -

1, indicating perfect negative correlation, which means that there 

is a negative linear relationship between the two variables. When 

one variable increases, the other tends to decrease. The r value is 

close to 0, which indicates that there is no linear relationship 

between the two variables [8]. The results of the data analysis of 

the stainless-steel tensile test are shown in Fig. 3. 

 

 
Fig. 3. Relationship between chemical elements and heat treatment with mechanical properties. 

 

Based on the results of the Pearson correlation analysis, it can 

be concluded that temperature has a significant relationship with 

the mechanical properties of stainless steel. It was found that 

temperature has a very strong negative correlation with Yield 

Strength (YS) and Ultimate Tensile Strength (UTS), with 

correlation values of -0.71 and -0.86, respectively. This indicates 

that increasing the temperature during the heat treatment process 

causes a decrease in the strength and ductility of the material. On 

the other hand, Elongation (EL) shows a very weak positive 

correlation with temperature, with a correlation value of 0.07. The 

strong negative correlation between the temperature and YS and 

UTS is consistent with the structural phenomena and phase 

transformations that occur during the heat treatment of austenitic 

stainless steels [30]. Increasing the temperature during heat 

treatment can result in structural hardening, with the formation of 

new phases with different mechanical properties. As a result, high 

temperatures can reduce the strength of the material by affecting 

the distribution of atoms in the crystal or reducing the content of 

structural elements. In addition, heat treatment temperature can 

also affect phase transformations such as carbide deposition, 

which can reduce the ductility and elasticity of the material [31]. 

However, the very small positive correlation between EL and heat 

treatment temperature indicates that the influence of temperature 

on elongation is relatively low. This shows that changes in 

temperature tend to have minimal impact on the level of 

deformation or ductility of the material. Thus, understanding these 

relationships is important in planning appropriate heat treatment 

processes to meet specific needs in material applications. 

Chemical elements such as copper (Cu) and nickel (Ni) have a 

positive correlation with Elongation (EL), which indicates that the 

higher the concentration of these chemical elements, the higher the 

elongation value. The research results of Niu et al. (2018) [32] 

regarding the influence of copper in enhancing the effect of 

Transformation-Induced Plasticity (TRIP) in stainless steel found 

that the addition of Cu had a significant impact on elongation in 

stainless steel. This research highlights the role of Cu in 

accelerating the kinetics of austenite reversion, namely the 

transformation of austenite back into its original form. Cu acts as a 

heterogeneous crystallizer and provides the necessary chemical 

conditions through interfacial segregation, ultimately enhancing 

the austenite formation. On the other hand, the Ni content in 

stainless steel can reduce the degree of martensitic transformation, 

which in turn can increase elongation and formability. Thus, 

understanding the role of Cu and Ni in the structure and 
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mechanical properties of stainless steel is an important factor in 

designing materials that have the desired performance. The 

implication is that controlling the concentration of these elements 

can be used as a strategy to modify the mechanical properties of 

materials with the aim of increasing their elasticity and 

deformability. 

Cooling methods such as water quenching and air quenching 

play an important role in determining the mechanical properties of 

stainless steel, especially elongation. The results of the analysis 

using Pearson correlation show that elongation has a positive 

correlation with quenched water of 0.34 and a negative correlation 

with quenched water of -0.34. The increase in elongation that 

occurs due to the water quenching of stainless steel can be 

explained by the rapid cooling process. This rapid cooling 

prevents or minimizes the formation of undesirable phase 

precipitates such as carbides or nitrides, which can inhibit 

dislocation movement and reduce plastic deformation in the 

material. By preventing the formation of these phases, water 

quenching can help increase the plastic deformation of stainless 

steel [33]. Apart from that, water quenching can also produce a 

microstructure that is more homogeneous and free from structural 

imperfections. The rapid cooling process allows the atoms in the 

material to lock into more regular positions, thereby reducing the 

dislocations and structural defects. This can result in materials 

with better strength and higher deformability, which in turn 

contributes to increased elongation. On the other hand, cooling 

with air produces a slower cooling process compared to cooling 

with water, which results in the formation of a more complex and 

non-uniform microstructure. The microstructure formed may 

include undesirable phases or structural defects, such as carbides 

or nitrides formed during cooling. Therefore, the selection of an 

appropriate cooling method can significantly influence the 

mechanical properties of stainless steel, especially elongation [34]. 

3.3 Random Forest Modeling with Feature Selection 

In model testing, cross-validation techniques are used to ensure 

model accuracy. Cross-validation is an evaluation technique 

employed to measure a model's performance by dividing the data 

into two parts: training data and testing data. In cross-validation, 

the training data is split into several different subsets or folds, and 

each subset is iterated as the testing data, while the remaining 

subsets are used as training data. In this modeling, 10-fold cross-

validation is applied, where the data is divided into 10 different 

subsets or folds and iterated 10 times by selecting each subset in 

turn as the testing data and the remaining subsets as the training 

data. The evaluation results from each iteration will be averaged to 

obtain a more valid evaluation metric. Fig. 4 illustrates the use of 

10-fold cross-validation. 
 

 
Fig. 4. Illustration of cross-validation.  

In this stage, the modelling of mechanical properties of 

stainless steel is conducted by dividing the process into three 

distinct parts. In the first part, the Random Forest (RF) model is 

evaluated using all input variables available in the dataset. To 

enhance model performance, parameter optimization is performed 

via grid search to identify the optimal parameters for predicting 

mechanical properties. The grid search process specifically 

examines the number of estimators parameter, exploring values 

ranging from 5 to 100. This approach can mitigate overfitting; by 

employing a greater number of decision trees, the model becomes 

more robust and is better equipped to reduce the risk of 

overfitting. Overfitting arises when the model is excessively 

complex, resulting in an overly precise fit to the training data, 

which hinders its ability to make accurate predictions on 

previously unseen data [35]. 

In some cases, increasing the number of estimators can 

improve model performance, especially if the data has high 

complexity. However, it is also often found that there is a point 

where adding an estimator does not provide significant 

improvements and can even increase the computational load [36]. 

In this research, parameter searches were carried out separately for 

each mechanical property, namely Yield Strength (YS), Ultimate 

Tensile Strength (UTS), and Elongation (EL). A visualization of 

the process of searching for the best parameters for each 

mechanical property can be found in Fig. 5. Meanwhile, the best 

number of estimators obtained from the grid search as shown in 

Fig. 6. 

 

 
Fig. 5. Changes in MSE for each variation of number of 

estimators. 

 

 
Fig. 6. Results of the best model parameters. 

 

Fig. 5 presents an overview of the model's performance for 

each mechanical property, highlighting variations in the number of 

estimator values. As depicted in Fig. 6, the model exhibits its 

highest performance in predicting Ultimate Tensile Strength 

(UTS), achieving an R-squared value of 0.94 with 67 estimators. 

In contrast, Yield Strength (YS) attains its highest R-squared value 

of 0.88 with the same number of estimators. Elongation (EL) 

yields an R-squared value of 0.76 when the number of estimators 

is set to 44. 



 503 Disseminating Information on the Research of Mechanical Engineering - Jurnal Polimesin Volume 22, No. 5, October 2024 

In the subsequent stage, following the testing of the model 

utilizing all features and identifying the optimal parameters, the 

next step involves integrating the best model identified through 

the Recursive Feature Elimination (RFE) feature selection method. 

During this process, the number of features employed ranged from 

5 to 21. This experiment was conducted separately for the three 

mechanical properties of stainless steel. RFE plays a crucial role 

in identifying the features that most significantly influence the 

prediction of mechanical properties, thereby providing a deeper 

understanding of the dominant factors affecting model 

performance. The results of the evaluation metrics for the three 

mechanical properties of stainless steel are presented in Fig. 7. 

 

 
Fig. 7. Results of the evaluation metrics for the three mechanical 

properties of stainless steel. 
 

Based on Fig. 7, it is evident that a higher number of features 

does not necessarily correlate with improved model performance. 

In the prediction of Yield Strength (YS), the model achieves the 

highest evaluation metrics with 13 features, resulting in a Mean 

Absolute Error (MAE) of 10.27, a Root Mean Squared Error 

(RMSE) of 14.31, and an R-squared value of 0.88. In contrast, the 

prediction of Ultimate Tensile Strength (UTS) demonstrates 

superior performance compared to YS prediction, with optimal 

results obtained using 8 features; this model yields an MAE of 

13.37, an RMSE of 21.97, and an R-squared value of 0.95. 

Furthermore, in elongation prediction, the model exhibits the best 

performance with 19 features, achieving an MAE of 3.46, an 

RMSE of 6.04, and an R-squared value of 0.80. These findings 

align with research conducted by Probst and Boulesteix (2018) 

[37], which indicates that increasing the number of trees in a 

random forest ensemble can enhance prediction accuracy. This 

improvement is attributed to the model's ability to leverage a 

greater amount of information to generate more precise 

predictions. Another study conducted by Lin et al. (2022) [38] 

shows that increasing the number of trees in a random forest 

ensemble can improve the stability and generalization of the 

model, contributing to better performance in predicting various 

types of output. Therefore, the results of this study are consistent 

with previous findings that the number of estimators plays an 

important role in determining the performance of random forest 

models. 

The variable names corresponding to each number of features 

selected using Recursive Feature Elimination (RFE) are presented 

in Table 2. The RFE results indicate that 13 out of 21 input 

variables significantly influence Yield Strength (YS). In contrast, 

the analysis for Ultimate Tensile Strength (UTS) yielded markedly 

different results, revealing that only 8 out of 21 input variables 

substantially affect UTS. Similarly, for Elongation (EL) 

predictions, the results were closely aligned with those for YS, 

with RFE identifying 14 input variables that notably impact EL. 

These discrepancies may arise from model complexity; the 

performance of a model can be compromised if it is either overly 

simplistic or excessively complex, necessitating the identification 

of an appropriate balance. The optimal number of features is 

contingent upon the inherent complexity of the relationship 

between input variables and the output [39]. This observation 

aligns with the findings of prior research, wherein RFE operates 

iteratively to eliminate features deemed less significant from the 

dataset. Features of lesser importance are systematically removed 

at each iteration, culminating in an optimal subset of features, 

which is subsequently evaluated for performance. The results 

demonstrate that the RFE model successfully selected 40 features 

from an initial pool of 754, achieving a feature reduction rate of 

94.69% and an accuracy rate of 93.88% [40]. 

The subsequent phase of this modeling process involves the 

application of Information Gain (IG) to identify the input variables 

that most significantly influence the three mechanical properties of 

stainless steel. Information gain quantifies the extent to which 

input variables, such as chemical elements and heat treatments, 

contribute valuable information for improving predictions of these 

mechanical properties. IG employs the concept of entropy to 

assess how effectively a feature can mitigate uncertainty in 

predicting a target variable. Entropy serves as a measure of 

uncertainty or randomness within a dataset; thus, lower entropy 

reflects more ordered or structured data. In this study, chemical 

element and heat treatment variables with an information gain 

score below 0.1 were excluded from model training. The 

outcomes of feature selection utilizing IG are depicted in Fig. 8.  

 

Table 2. Name and number of variables using RFE 

Mechanical properties Num features Selected features 

YS 13 Cr, Ni, Mo, Mn, Si, Nb, Ti, P, S, Al, ST temperature (K), ST time(s), and Temperature (K) 

UTS 8 Cr, Ni, Mo, Ti, Cu, S, Al, and Temperature (K) 

EL 14 Cr, Ni, Mo, Mn, Si, Ti, Cu, B, P, S, Al, ST temperature (K), ST time(s), and Temperature (K) 
 

Based on Fig. 8, the results indicate that each mechanical 

property of stainless steel yields different outcomes. Five variables 

are classified as having minimal impact on Yield Strength (YS), 

specifically manganese (Mn), silicon (Si), vanadium (V), sulfur 

(S), and cobalt (Co). In contrast, for Ultimate Tensile Strength 

(UTS), three variables are deemed to have limited influence: 
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vanadium (V), carbon (C), and sulfur (S). Regarding elongation, 

two variables, vanadium (V) and carbon (C), are similarly 

identified as having negligible influence. The results of feature 

selection using Information Gain (IG) demonstrate that heat 

treatment variables—such as temperature, heating time, and 

cooling method—significantly affect the three mechanical 

properties of stainless steel. This finding markedly contrasts with 

the previous results obtained from feature selection using 

Recursive Feature Elimination (RFE), which identified eight 

elements that exerted the most influence on UTS, while 

recognizing only one heat treatment variable, namely temperature, 

as influential. 

 

 

 

 

 
Fig. 8. Results of feature selection using IG. 

 

The comparison results for these three treatments are available 

in Table 3. This comparison shows that feature selection using 

RFE produces better performance compared to IG and without 

feature selection. If analyzed in more detail, it can be seen that the 

combination of the random forest algorithm with RFE shows the 

best performance on the three mechanical properties of stainless 

steel. The most significant difference is seen in the R-squared 

value for elongation, where RFE is able to reach an R-squared 

value of 0.8. This figure is much higher compared to feature 

selection using IG, which only achieved an R-squared value of 

0.78. On the other hand, without feature selection, the model gives 

the worst results, with an R-squared value of 0.76. This indicates 

that RFE helps improve the interpretability of the model by 

selecting the most relevant subset of features, thereby facilitating 

the understanding of the factors that contribute to the prediction. 

By reducing feature dimensions and preventing overfitting, 

models developed with Random Forest and RFE tend to have 

better performance [15]. 
 

Table 3. Comparison of model evaluation metrics 

No feature selection RFE IG 

Mechanical 

properties 

MAE RMSE    Mechanical 

properties 

MAE RMSE    Mechanical 

properties 

MAE RMSE    

YS 11.31 15.1 0.88 YS 10.272 14.319 0.888 YS 10.377 14.67 0.882 

UTS 14.68 25.24 0.94 UTS 13.375 21.977 0.958 UTS 13.367 22.73 0.955 

EL 4.73 7.17 0.76 EL 3.464 6.048 0.808 EL 3.59 6.346 0.788 
 

3.4 Model Evaluation 
Model evaluation is a critical process in model development 

that aims to assess the performance and accuracy of the model in 

predicting the mechanical properties of stainless steel. In this 

evaluation, various metrics are analyzed to determine the model's 

effectiveness in achieving its specific objectives. External testing 

is a key component of model evaluation that involves using a 

dataset that is distinct from the training dataset to assess the 

model's performance on previously unseen data [42]. By 

employing external testing, the reliability and generalizability of 

the model can be more rigorously evaluated, as it is assessed in 

scenarios that more closely resemble actual usage. Consequently, 
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evaluating the model through external testing helps ensure its 

capability to accurately predict the mechanical properties of 

stainless steel when presented with new, unseen data. 

In this study, new data that is not included in the training 

dataset of 50 samples is utilized. The model being evaluated in 

this stage is the RFE model, which is optimized with the best 

parameters: 13 features with 65 estimates for Yield Strength (YS), 

8 features with 67 estimates for Ultimate Tensile Strength (UTS), 

and 14 features with 44 estimates for Elongation (EL). Thus, the 

new data is aligned with the number of variables specified by the 

model. The results of the model testing using this new data are 

depicted in Fig. 9. 

 

 

 

 

 
Fig. 9. Results of model testing using new data. 

 

Based on Fig. 9, it can be seen that the random forest model 

with RFE is able to predict new data very well. The results of 

model evaluation using new data are not much different from the 

results of model training. This can be seen from the results of the 

evaluation metrics, which are not much different; namely, in the 

YS prediction, the MAE value was 9.91, the RMSE 14.20, and the 

R-squared 89. Meanwhile, for predicting the UTS value, the 

model showed better performance, namely with MAE values of 

12.89, RMSE 16.97, and R-squared 9.7. while for the EL model, 

the MAE value was 3.82, RMSE 6.1, and R-squared 0.85. These 

results indicate that the model is able to predict the mechanical 

properties of stainless steel with a wide variety of data. By using 

this model, steel industry players can optimize production 

processes and improve product quality by predicting the 

mechanical properties of stainless steel with a high degree of 

accuracy. This can reduce the time and costs required for complex 

physical testing. In addition, accurate predictions of material 

mechanical properties can help industry design more efficient and 

safer products by adjusting manufacturing process parameters, 

selecting appropriate materials, and designing optimal product 

structures based on the resulting predictions. In the face of diverse 

data variations, these models can provide consistent and reliable 

predictions, enabling the industry to overcome the challenges 

often faced in processing non-uniform data. Overall, the results of 

this research provide a strong foundation for the steel industry to 

adopt a predictive approach in their production processes, with the 

potential to increase efficiency, reduce costs, and improve product 

quality. 

4 Conclusion 

This study compared three combinations of random forest 

models for predicting the mechanical properties of stainless steel: 

without feature selection, with Recursive Feature Elimination 

(RFE), and with Information Gain (IG). 
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1. The comparison showed that RFE significantly outperformed 

both IG and no feature selection. The RFE model was able to 

select the most influential input variables for each stainless 

steel mechanical property. 

2. For Yield Strength (YS), RFE identified 13 of the 21 most 

influential variables, with an evaluation metric value of Mean 

Absolute Error (MAE) of 9.91, Root Mean Square Error 

(RMSE) of 14.20, and R-squared of 89. 

3. For  Ultimate Tensile Strength (UTS), the model identified 8 

of the 21 most influential input variables, with an MAE value 

of 12.89, RMSE of 16.97, and R-squared of 9.7. 

4. For Elongation (EL), this model identified 14 of the 21 most 

influential variables, with an MAE evaluation metric value of 

3.82, RMSE 6.1, and R-squared 0.85. 

5. Parameter optimization revealed the best performance with 65 

estimators for YS, 67 for UTS and 44 for EL, emphasizing the 

importance of optimal parameter selection. 

6. The results indicated that the use of the random forest model 

with RFE as a feature selection technique and optimal 

parameter selection can help the steel industry increase the 

accuracy of predicting the mechanical properties of materials, 

which in turn can support the development of more efficient 

and high-quality products. Thus, this research provides 

valuable guidance for industry in implementing a predictive 

approach to stainless steel development and production. 
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