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Abstract 

This research presents a new spatial Parallel Manipulator (PM) 

with pure translational motion in a plane or 2-DOF PM for pick-

and-place operation. This spatial 2-DOF PM is constructed by the 

2(RRR)-2(PRRR) kinematic chain and is named Ψ2. This Ψ2 PM 

offers simplicity in its architecture because each limb applies a 1-

DOF joint. The applicability of Ψ2 for pick-and-place operations 

was investigated by performing kinematic and singularity 

analyses at the preliminary stage. The singularity of Ψ2 was 

determined by relying on its Jacobian matrices, where three kinds 

of singularity can be evaluated. Next, the singularity and Jacobian 

matrix hold a key to identifying the workspace in a regular 

geometrical shape required for the operation of such an 

application. The identified operational workspace must be free of 

singularity and good conditioning workspace. In this study, two 

predetermined values of Ψ2 kinematic parameters were used to 

evaluate the kinematic characteristics and singularity of the 

manipulator as well as to identify its operational workspace. 

According to the results, Ψ2 has a good prospect of being applied 

to high-speed pick-and-place operations. 
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1 Introduction 

Pick-and-place operation is a common means for handling 

goods in the electronic, pharmacy, and food processing industries 

[1]. This operation involves translational motion in three-

dimensional space (3T) and one rotational motion about a 

particular axis (1R), also known as a Schönflies motion. This 

motion can be achieved using serial manipulators, such as SCARA 

[2], or parallel manipulators [3]. Parallel Manipulators (PMs) 

provide more advantages over their serial counterparts in terms of 

speed, acceleration, stiffness, weight, payload-to-weight ratio, and 

dynamic characteristics [4]. Several parallel architectures, 

including Par4 [5], Pantopteron-4 [6], X4 [7], TH-SR4 [8], and 

TH-HR4 [3], have been developed for PMs with Schönflies 

motion.  

In certain applications, pick-and-place operations can be 

performed without relying on the Schönflies motion itself. 

Additionally, the pick-and-place operation can be carried out 

using pure translational motion in space (3T) or even pure 

translational motion in the plane (2T). The latter option (2T) 

allows a simpler architecture and less complex control scheme 

than 3T or 3T1R [9]. Pure translational motion (2T), also known 

as a two-degree of freedom (2-DOF) PM, is applied to a 5R Planar 

Parallel Manipulator (PPM) [10] and its variant. The workspace 

can be oriented either horizontally or vertically. The horizontal 

version can be considered the parallel version of SCARA and is 

achieved by replacing parts of its first two serial chains, as 

implemented in DexTAR [11] and 2(RRR)-RP [12]. In this 

context, R denotes the revolute joint, P represents the prismatic 

joint, and the underscore sign indicates the actuated joint. 

On the other hand, the vertical version of the 2-DOF PM can 

be applied directly to pick-and-place operations using either planar 

or spatial architectures. The Diamond PM, a modified 5R PPM 

with a parallelogram chain (Pa) at one or both limbs, is an 

example of a planar architecture [9]. This manipulator has been 

successfully applied in production lines for quality inspection of 

rechargeable batteries. Thus, Meng et. al. [13] proposed V2, 

utilizing the PaUU-PaRR kinematic chain for the planar 

architecture of pick-and-place operation. This manipulator has an 

innovative design configuration that uses parallelogram chains and 

universal joints (U), providing high translational capability for 

high-speed operation. 

The spatial structure is designed to alleviate the out-of-plane 

stiffness, which is the main drawback for planar structures, as 

demonstrated by Par2 [14], [15] and IRSBot-2 [16], [17]. Nurahmi 

[18] described 27 different 2-DOF PM architectures based on 

planar and spatial architectures, including previously proposed 

designs. These architectures were synthesized using the screw 

theory, resulting in 2-DOF PMs with 2, 3, and 4 limbs. Thus, these 

27 architectures were optimized for two objective functions: the 

complexity of the kinematic chain (minimization) and the stiffness 

(maximization). As a result, eight out of 27 architectures were 

found to be the optimal architectures after the application of the 

Pareto front.  

Furthermore, these eight architectures are the best candidates 

for pick-and-place operations using 2-DOF PMs; please refer to 

Figure VI.2 and Table VI.1 in [18]. However, there is one 

architecture that can be categorized as the best compromise 

between complexity and stiffness among these eight architectures. 

This best compromise value is the architecture constructed by a 

2(RRR)-2(PRRR) kinematic chain. Therefore, this study proposes 

a new 2 DoF parallel manipulator named by Ψ2 using this 

2(RRR)-2(PRRR) kinematic chain.  

Ψ2 has the main features: (1) less complexity with high 

stiffness, (2) can keep its moving platform to stay parallel to the 

flat ground during its motion thanks to its passive limbs. A 

comprehensive investigation is required to realize Ψ2 for the real-

world applications, especially for high-speed pick-and-place 

operations. Hence, this study was conducted to analyze the 

kinematics, singularity, and workspace of Ψ2 for achieving such 

an application. This analysis gives an insightful identification of 

its operational workspace using its kinematic performance index. 

The remainder of this manuscript is organized as follows: (1) 

section 2 comprises the sequence of steps taken to perform this 

research, (2) the findings during the investigation are presented 

and discussed in section 3, and (3) section 4. 

2 Research Methods/Materials and Methods 

This study presents the kinematic and singularity analysis of 

Ψ2, a new spatial PM with pure translational motion in the plane 

using the 2(RRR)-2(PRRR) kinematic chain. This analysis is 

initiated by applying the joint-and-loop graph and the kinematic 

diagram to represent its structure, as shown in Fig. 1(a). All the 

joint axes in each limb are arranged in parallel. The first two joints 

of the PR on the PRRR limb can also be replaced with a 

cylindrical (C) joint. Hence, Ψ2 can have another equivalent 

kinematic chain, 2(RRR)-2(CRR), whose joint-and-loop graph is 

shown in Fig. 1(b). Moreover, the kinematic diagram of Ψ2 and its 

equivalent is depicted in Fig. 2. 
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Fig. 1. Joint-and-loop graph for the (a) 2(RRR)-2(PRRR) and (b) 

2(RRR)-2(CRR) kinematic chains. 

 

In general, Ψ2 and its equivalent kinematic chain consist of a 

base, a movable platform, and four limbs. For construction, the 

base is connected to the movable platform by utilizing these four 

limbs arranged axisymmetric about the Z-axis. The RRR limbs are 

indicated by limb 1 and 2 and are situated on the XZ-plane, as 

displayed in Fig. 2. Moreover, the PRRR limbs (limb 3 and 4) lie 

on the perpendicular plane to the active limbs, i.e., the YZ-plane. 

 

 
Fig. 2. Kinematic diagram of the (a) 2(RRR)-2(PRRR) and (b) 

2(RRR)-2(CRR) kinematic chains, where the actuated revolute 

joints are colored red, as indicated in A1 and A2. 
 

Then, a description of Ψ2 in terms of its configuration and 

mobility can be introduced. However, the manipulator was 

synthesized as a spatial PM with pure translational motion in the 

plane (2-DOF). The mobility of Ψ2 is still described briefly by 

applying the Grübler-Kutzbach (GK) formula and a screw theory 

based on observation methods. 

The position equation can be formulated by referring to its 

kinematic diagram. This equation governs the displacement 

relationship between each kinematic chain and the platform. This 

position equation can be solved to obtain the solutions for its 

inverse and direct kinematic problem. The inverse and direct 

kinematic solutions are calculated to obtain their closed-form and 

numerical solutions. Moreover, this numerical solution is obtained 

by employing interval analysis because it has been applied in 

diverse areas, especially in robotics [19], [20]. Interval analysis 

can produce all real solutions in the nonlinear algebraic equations 

that govern the position equation. An interested reader should 

refer to the references [21] to gain more insight into this subject. 

The calculations for the inverse and direct kinematic solutions in 

closed-form and numeric form are utilized to check the solutions 

when using predetermined values for kinematic parameters. 

The velocity equation can be obtained by taking the derivative 

of the position equation with respect to time once. Then, the 

velocity equation is rewritten in compact form to generate the 

Jacobian of the inverse and direct kinematics. These Jacobians can 

be used to analyze the singularity of Ψ2 by examining whether 

these matrices are rank deficient. Three kinds of singularities 

based on the Jacobians are evaluated to determine under which 

conditions the Ψ2 performance degenerates.  

Furthermore, the Jacobian matrix is utilized to determine the 

conditioning index of Ψ2. In this study, the conditioning index is 

applied as a main performance index to identify a workspace that 

is useful for pick-and-place operation. This identified workspace 

is referred to as the operational workspace and is commonly 

defined as a simple 2D or 3D geometrical object, such as a square, 

rectangle, cylinder, cube, or rectangular prism. This workspace is 

characterized by the largest shape in a rectangular (or a square) 

form inside a Good-Condition Workspace (GCW). The GCW is a 

workspace where the Local Conditioning Index (LCI) is greater 

than 0.5 [22]. This study utilizes NumPy [23] and JuliaInterval 

[24] for numerical and interval calculations, respectively. 

3 Results and Discussion 

3.1 Mobility of Ψ2 

The mobility of Ψ2 can be determined by referring to Fig. 2. It 

shows the number of links and joints possessed by Ψ2 and its 

equivalent kinematic chain. Ψ2 possesses 12 links and 14 joints, 

while 2(RRR)-2(CRR) has 10 links and 12 joints. The application 

of the GK formula [22] for Ψ2 and its equivalent kinematic chain 

results in a mobility of -4, which means that the manipulators are 

classified as over constrained manipulators. The mobility of an 

over-constraint PM can be determined using the modified GK 

formula, which essentially integrates the screw theory, as 

presented by [25]. From an architectural point of view, Ψ2 is 

similar to Par2 [15] which has active and passive limbs. In 

contrast, Ψ2 has less complexity compared to Par2 which uses 

2(R(PaS))-2(R(PaS)), in terms of the number of links and joints 

used, according to its complexity index [26] and referring to work 

[18]. Here, PaS is a spatial parallelogram chain with Spherical (S) 

joints.  

Furthermore, the screw theory can be applied to determine 

mobility by simply observing the motion and constraining forces 

and moments at each limb and the movable platform. The 

direction of all the joint axes present in Ψ2 and its equivalent 

kinematic chain is required for the first setup. All the joint axes in 

each limb of both kinematic chains are perpendicular to each 

respective plane. In this case, all joint axes of the active limbs and 

the passive limbs have a direction to the +Y-axis and +X-axis, 

respectively. Each limb that consists of an RRR kinematic chain 

produces a general planar motion, i.e. 2T and 1R at its respective 

plane. Thus, the presence of the P-joint at the PRRR limbs enables 

that limb to gain another motion in the X-direction. Hence, each 

RRR limb generates general planar motion in the XZ-plane. 

Moreover, each PRRR limb can undergo general planar motion in 
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the YZ-plane and translational motion perpendicular to this YZ-

plane. 

The constraint forces or moments that constrain those limbs 

can be determined as reciprocal conditions to the motion 

generated by each respective limb. The RRR limbs are constrained 

by one force in the Y-axis and two moments about the X- and Z-

axes. Then, the PRRR limbs are constrained by two moments 

about the Y- and Z-axes. Furthermore, all the limbs connecting the 

base and movable platform constrain the platform as a result of the 

combination of constraints on each limb. These constraints on the 

platform include one constrained force on the Y-axis and three 

constrained moments about the X-, Y-, and Z-axes. Consequently, 

these constraints establish translational motion on the platform in 

the X- and Z-axes. Hence, Ψ2 and its equivalent kinematic chain 

have a mobility of 2-DOF in the XZ-plane.  

The limb with the RRR chain is an active limb because its first 

joint (R) is actuated, while the PRRR chain is a passive limb. Each 

limb, whether active or passive, consists of a distal and proximal 

link. The distal link connects two revolute joints, Ai and Bi, where 

i denotes the limb number. Then, the proximal link connects the 

two revolute joints Bi and Ci. The lengths of the distal and 

proximal links are denoted by a and b, respectively, and are the 

same for each active and passive limb. Moreover, the distance 

between point A1 and point A2 through point O in the middle is 

equal to two times of the base radius rB. Additionally, the distance 

between points A3 and A4 is equal to the length of A1A2. Finally, 

the position of point Ci toward point P is equal to the radius of the 

movable platform rP.  

Four parameters characterize Ψ2, denoted by rB, a, b, and rP; 

these parameters are known as kinematic parameters. To produce 

numerical results, these kinematic parameters must be defined 

with numerical values. At this stage, we selected numerical values 

for two sets of kinematic parameters, which are given in Table 1. 

For Ψ2, we will only consider the positive part of its workspace 

along the Z-direction. 
 

Table 1. Two sets of numerical values for the kinematic 

parameters of the manipulator are shown in Fig. 2, where the 

dimensions are defined in mm. 
Case rB a b rP 

#1 100 270 400 30 

#2 100 335 335 30 

3.2 Position Analysis 

The previous section extensively addressed the architecture of 

the manipulator. The position equation can be determined by 

referring to Fig. 3 for the view of the XZ-plane. Then, for the 

active limb itself, the position of point P can be defined by using 

the loop-closure equation (Eq. 1) 
 

, (1) 
 

for i = 1, 2. The vectors given in Eq. 1 are , 

, , , 

, , and . 
 

In this manipulator, the joints at A1 and A2 are the active joints, 

while the joints at B1 and B2 are the passive joints. The passive 

joint angles can be eliminated by arranging Eq. 1 and applying the 

dot product for each side. This yields Eq. 2 
 

,
 (2) 

 

or it can be rewritten as Eq. 3 
 

,
 (3) 

 

where , and . The term  

can be unified as a kinematic parameter r. 

 
Fig. 3. View of the manipulator on the XZ-plane. 

3.2.1 The Inverse Kinematic Problem 

Afterward, the solution for the Inverse Kinematic Problem 

(IKP) can be determined to obtain the values of the actuated joints, 

θ1, and θ2, as the actuator space for the given position of points P, 

x, and z. It is expressed mathematically as Eq. 4. 
 

, (4) 

 

where 
 

, (5) 

 

for i = 1, 2; and λ is the branch index which has values of +1 and -

1. The sign of this branch index indicates that the manipulator has 

four kinds of assembly modes: (+, +); (+, -); (-, +); and (-, -). An 

arrangement of this manipulator in Fig. 3 shows that it has the (+, 

-) assembly mode.  

The closed-form solution in Eq. 4 is evaluated using the 

kinematic parameters in Table 1 (Case #1) for the position of point 

P, which is (200, 500) mm. Then, the roots of Eq. 3 can be 

computed to obtain the interval solution for the given position. 

Table 2 compares the evaluated closed-form solution and the 

interval solution. The subscripts + and – at θi denote the positive 

and negative signs of the branch index, respectively. 

The application of interval analysis successfully determines the 

inverse kinematic solution of Ψ2. It provides both lower and upper 

bounds for the solutions. Each interval solution is bracketed by the 

respective closed-form solution. Thus, the pairs of closed-form 

solutions that constitute the assembly modes can be visualized to 

represent their physical appearance, as shown in Fig. 4. 
 

Table 2. The evaluated closed-form and interval solutions for the 

IKP when P is at (200, 500) mm. All angular solutions are defined 

in rad.  

θi Closed-form solution Interval solution 

θ1+ 0.98023298 [0.980232, 0.980233] 

θ1- -0.86037667 [-0.860377, -0.860376] 

θ2+ 1.16087314 [1.160870, 1.160880] 

θ2- -0.50539612 [-0.505397, -0.505396] 

3.2.2 The Direct Kinematic Problem 
On the other hand, the solution of the Direct Kinematic 

Problem (DKP) can be found by solving Eq. 3 for the positions of 

points P, x, and z, when the actuator spaces, θ1 and θ2, are known. 

Solving for z can be performed by treating z as a constant that 

reduces Eq. 3 into a second-order polynomial in x, 
 

, (6) 
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(a)  (b) 

 

 

 
(c)  (d) 

Fig. 4. The assembly modes for the inverse kinematic solutions: (a) (+, +), (b) (+, -), (c) (-, +), and (d) (-, -). 

 

for      , where , 

, and . 

Afterward, Sylvester’s dialytic elimination method can be 

applied to Eq. 6, which results in a second-order polynomial in z. 

This process is given by Eq. 7. 

 

. (7) 

 

Hence, the solution for z can be obtained as the root of this 

second-order polynomial by relation Eq. 8 

 

, (8) 

 

where , , 

and . 

Once the solution for z is obtained, it can be used to determine 

the solution for x using Eq. 6 by subtracting the equation for i = 1 

from the equation for i = 2. Thus, we have Eq. 9 

 

, (9) 

 

where . 

Eq. 8 and Eq. 9 indicate that the manipulator has a closed-form 

solution for the DKP. The direct kinematic solution in Eq. 8 and 

Eq. 9 leads to two solutions. These solutions are two pairs of (x+, 

z+) and (x-, z-), where subscript + and – denote the positive and 

negative signs of the value under the roots in Eq. 8, respectively. 

Analogous to the inverse kinematic solution, the closed-form 

solution is evaluated for given values of actuator space θ1 and θ2 

of (π/3, -π/8) rad, respectively. Case #1 is selected for evaluation 

of the direct kinematic solution in terms of its kinematic 

parameters. Again, the roots of Eq. 3 are determined for that value 

of the actuator space.  

Consequently, the interval solution gives a guaranteed bound 

for the evaluated closed-form solution. The first pair of solutions 

(x+, z+) for the evaluated closed-form solution of (138.93703, 

499.43291) mm is bounded by the interval box of [138.9370, 

138.9371] mm × [499.4329, 499.4330] mm. Moreover, the second 

pair of solutions (x-, z-) for the evaluated closed-form solution is  

(-8.434701, -114.985436) mm and lies within the interval box of 

[-8.4347012, -8.4347011] mm × [-114.98544, -114.98543] mm. 

Finally, the direct kinematic solution of Ψ2 can be presented in its 

physical representation, as shown in Fig. 5. 

The existence of a closed-form solution for the DKP allows an 

efficient implementation for real-time position control and gravity 

compensation, as reported by [27]. It means that Ψ2 can benefit 

from this closed-form solution of its DKP when applying a real-

time position control in the future. 

3.3 Velocity and Jacobian 

The velocity equation of Ψ2 can be found by differentiating 

Eq. 3 to time once. It can be expressed mathematically as Eq. 10. 

 

 (              )  ̇

 (         ) ̇  (        ) ̇ 
(10) 

 

for i = 1, 2. This equation can be further expanded and presented 

in compact form as Eq. 11 

 

, (11) 

 

where  and . 
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(a) 

 
(b) 

Fig. 5. Two configurations for the direct kinematic solutions based 

on the x and z pairs in Eq. 7 and Eq. 8: (a) (x+, z+) and (b) (x-, z-). 

 

Here,  is the Jacobian of the inverse kinematic that forms a 

diagonal matrix where its element is filled by 

, for i = 1, 2, or 

. (12) 

 

Then,  is the Jacobian of the direct kinematic that is stated in 

matrix form as Eq. 13. 

 

. (13) 

 

Furthermore, the Jacobian matrix can be determined by applying 

the relation [22] as Eq. 14. 

 

. (14) 

3.4 Singularity Analysis and Workspace 

The singularity of the manipulator can be determined when the 

matrices  and  are rank deficient. Then, the first kind of 

singularity, or the inverse kinematic singularity, is given 

mathematically by  [22], or  

 

. (15) 

 

Eq. 15 provides a solution for both actuation angles, 

 and . This solution is fulfilled 

by a condition where the first and the second active limbs are fully 

extended or folded, as illustrated in Fig. 6. This singularity defines 

the boundary of the workspace for Ψ2 because of the presence of 

its loci. Thus, the workspace bound by these singularity loci is 

termed the theoretical workspace. 

 

 

 

 
(a)  (b) 

 

 

 
(c)  (d) 

Fig. 6. An example of a singularity configuration of the first kind is when the distal and proximal links are perfectly extended at (a) the 

first and (b) the second active limbs and when both links are perfectly folded at (c) the first and (d) the second active limbs. 

 

The second kind of singularity or direct kinematic singularity 

occurs when the matrix  is ill-conditioned. It is stated 

mathematically by |  |    [22], or  
 

 (16) 

Eq. 16 implies that the proximal links of both limbs are parallel to 

each other or in line with the platform, see Fig. 7. This second 

kind of singularity occurs inside the theoretical workspace. It 

splits the theoretical workspace into several parts because of its 

singularity loci. Thus, the largest nonsingular part is taken as the 

usable workspace. 
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(a) 

 
(b) 

Fig. 7. An example of a singularity configuration of the second 

kind is when the proximal links in the active limbs are (a) parallel 

and (b) colinear to the platform. 

Moreover, the third kind of singularity, or combined kinematic 

singularity, occurs when both matrices  and  are rank 

deficient at the same time [22]. This leads to the intersection 

between loci of the inverse and direct kinematic singularities. This 

kind of singularity exists for special kinematic parameters. For 

instance, Ψ2 with rB = rP produces loci of inverse kinematic 

singularity that coincide with loci of direct kinematic singularity. 

The singularities of Ψ2 can be evaluated numerically using the 

kinematic parameters given in Table 1. The boundary for its 

workspace, as the loci of inverse kinematic singularity, is 

determined by the condition for the first kind of singularity, Eq. 

15, as shown in Fig. 8. Applying the condition given by Eq. 16 

results in the loci of direct kinematic singularity. 

Ψ2 of Case #1 shows that only the loci of the inverse 

kinematic singularity bound its theoretical workspace. This means 

that the usable workspace is the theoretical workspace itself. 

Moreover, the Ψ2 of Case #2 presents loci of direct kinematic 

singularity inside its theoretical workspace. Hence, a workspace 

with no singularity inside can be extracted by removing an area 

enveloped by the loci of direct kinematic singularity; this 

workspace is referred to as the usable workspace [22]. Thus, the 

intersection of these two loci is the loci for combined kinematic 

singularity, which is not present for both cases.  

 

 

 

 
(a)  (b) 

Fig. 8. The singularity loci and workspace of Ψ2 for (a) Case #1 and (b) Case #2. 

 

3.5 Workspace Identification 

The useful workspace required for pick-and-place operation is 

identified by relying on the conditioning index. The conditioning 

index can be computed by first calculating its condition number 

using the Jacobian matrix, Eq. 14, which is defined as Eq. 17 [22]: 

 

, (17) 

 

where ||…|| denotes the Euclidean norm of a matrix.  

The performance index called the Local Condition Index (LCI), is 

calculated as an inverse of this condition number [22] 
 

. (18) 
 

Using the information given in Table 1, the LCI distribution of 

Ψ2 over the usable workspace can be plotted for each respective 

case as shown in Fig. 9. Each visualization is shown in a contour 

plot where an interval of 0.1 is applied to indicate the value of LCI 

from 0 to 1, in addition to the use of the color map. 
 

 

 

 
(a)  (b) 

Fig. 9. The distribution of LCI values across the usable workspace for Ψ2 with kinematic parameters in (a) Case #1 and (b) Case #2. 
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A usable workspace with an LCI greater than 0.5 can be 

regarded as a Good Conditioning Workspace (GCW) [22]. These 

GCWs occupy approximately 78.40% and 58.74% of the usable 

workspace area for Case #1 and #2, respectively. In terms of this 

ratio, the Ψ2 with kinematic parameters in Case #1 has a larger 

GCW than that in Case #2. Hence, it can be directly correlated to 

the area required by the useful workspace for pick-and-place 

operation. The largest rectangular area inside this GCW can be 

identified for both cases using a rectangular shape, see Fig. 10. 

This rectangular shape is symmetric about the Z-axis.  

 

 
(a) 

 
(b)  

Fig. 10. The identified operational workspace of Ψ2 for (a) Case 

#1 and (b) Case #2. 

 
The largest rectangular area within the GCW is referred to as 

the identified operational workspace for the pick-and-place 

operation or simply as the operational workspace. The identified 

operational workspace is characterized by three parameters: the 

vertical position of the upper edge from the center of the fixed 

reference frame (z0), the width (w), and the height (h) of the 

rectangle. Therefore, these parameters and their corresponding 

areas are presented in Table 3. 

 
Table 3. The identified operational workspace for both cases of 

Ψ2 in a rectangular shape.  

Workspace  Case #1 Case #2 

z0 [mm] 163.48 393.96 

h [mm] 305.52 154.10 

w [mm] 677.84 512.08 

Area [mm
2
] 207 093.68 78 911.53 

 
Furthermore, the percentages of the operational workspace to 

the GCW for Cases #1 and #2 are 46.18% and 23.68%, 

respectively. Additionally, it is customary to compare the 

operational workspace to the usable workspace. The operational 

workspace of Ψ2 in Case #1 accounts for 36.21% of its usable 

workspace, while that in Case #2 is 13.91%. Only a small portion 

of the (usable or good conditioning) workspace is suitable for 

pick-and-place operation. Thus, Ψ2 with equal length of proximal 

and distal links gives a small operational workspace compared to 

Ψ2 with unequal length, i.e. the distal link is shorter than the 

proximal one. Therefore, this study is in agreement with any 

optimal design of PMs such as IRSBot-2 [17], Par2 [15], DexTAR 

[11], or 5R PPM [10], [28], [29].  

Information about the width of the identified useful workspace 

(w) can be used to determine the appropriate stroke of prismatic or 

cylindrical joints in the passive limbs. In practical applications, the 

use of cylindrical joints may be preferable to reduce joint type 

complexity [18]. However, the use of a prismatic joint may be a 

viable option from a static point of view. In addition, the prismatic 

joints on each passive limb can be connected during the operation. 

This connection can maintain the synchronization of both passive 

limbs during translational motion along the X-axis, as shown in 

Fig. 11. Further investigation can be performed in the future to 

clarify this argument. 

 

 
Fig. 11. Ψ2 with a rigid connection between the prismatic joints of 

each passive limb.  

 

Overall, Ψ2 is an excellent candidate for high-speed pick-and-

place operation in terms of kinematic, singularity, and workspace 

analysis. 

4 Conclusion 

This research proposed a new spatial PM with pure 

translational motion in a plane, named Ψ2, for pick-and-place 

operation. The architecture of Ψ2 is described in detail, including 

its kinematic parameters. Kinematic analysis of Ψ2 shows that its 

inverse and direct kinematic problems have closed-form solutions. 

These closed-form solutions are evaluated by the predetermined 

values of the kinematic parameters of Ψ2, which are verified by 

the solutions throughout the interval analysis. Moreover, the 

usable workspace of Ψ2 can be determined based on singularity 

analysis. A portion of the usable workspace with a good 

conditioning index has been successfully identified as the 

operational workspace for pick-and-place operation. A 

dimensional synthesis will be performed in future research to 

determine an optimized dimension for each kinematic parameter 

considering the prescribed operational workspace within good 

conditioning and good transmission workspaces. Afterward, 

dynamic analysis and designing of the control system can be 

conducted by using the optimized dimensions. As a result, the 

peak acceleration of Ψ2 can be determined to obtain how quickly 

it can be operated for pick-and-place operation. 
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