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Abstract 

Autonomous mobile robots are defined as robotic entities capable 

of independent movement and intelligent decision-making, relying 

on their ability to perceive and analyze their surroundings, 

including objects in their environment. In Simultaneous 

Localization and Mapping (SLAM) systems, loop closure is often 

achieved through visual place recognition techniques, where the 

system compares the current visual input with previously observed 

scenes to identify matches. In computer vision applications, 

Speeded-Up Robust Features (SURF) and Scale-Invariant Feature 

Transform (SIFT) are popular feature extraction algorithms used 

for such as key point detection, matching, and image registration 

tasks. The choice of inlier threshold should be based on the specific 

characteristics of the application and the nature of the images being 

processed. It often requires experimentation and tuning to find the 

optimal balance between robustness and accuracy. It Utilizes the 

pre-trained Local Feature Transformer (LoFTR) and MAGSAC++ 

estimator to address these drawbacks by employing the number of 

inliers to determine the similarity between two images for visual 

place recognition. Our experiment demonstrates that the number of 

inliers can determine the similarity of locations between two 

images. Scale variations and translation in location significantly 

influence the resulting number of inliers. Comparing images from 

the same location and from different locations yields varying 

numbers of inliers. The number of inliers significantly influences 

the similarity of locations. At the same location, the number of 

inliers is above 150, while at different locations, the number is 

below 150. 
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1 Introduction 

In recent times, there has been substantial interest in Visual 

Place Recognition (VPR), which involves identifying the location 

of images. This matter has garnered significant attention across 

various research domains, including computer vision, robotics, and 

machine learning [1]. Identifying locations visually is considered a 

crucial element in localization and navigation, playing a role in loop 

closure within Simultaneous Localization and Mapping (SLAM) 

algorithms [2]. 

Mobile robot navigation systems are often based on SLAM 

techniques. The crucial duty of finding previously visited locations 

in SLAM implementations is called "loop closure," in which the 

system finds a previously visited location and applies this 

knowledge to correct the map, which is then used to fix map 

inaccuracies that build up over time [3]. To execute visual SLAM 

mapping, cameras are used to gather data about the surroundings. 

Computer vision and odometry techniques are then combined to 

map the environment [4]. 

In particular, loop closure is usually solved via VPR in systems 

where cameras are the primary sensors [5]. It might be difficult to 

visually identify a place, especially in uncontrolled outside 

conditions and while doing so for extended periods. This is because 

images shot at various times in the same location might have quite 

distinct visual characteristics. The primary factors contributing to 

the observed variations could stem from alterations in viewpoint 

and illumination, the cyclic transitions between day and night, 

fluctuations in seasonal conditions, or the existence of dynamic 

elements and obstructive elements [6]. Recent advances in 

computer vision have been made possible by neural networks' 

capacity to learn feature representations from data that are superior 

to previously created ones by hand [7], while the most widely used 

feature descriptor for these kinds of jobs has likely been handmade 

strong features like SIFT, SURF, ORB, etc. [8]. Because of their 

accuracy and adaptability, Deep Neural Networks (DNNs) are 

widely employed in the study of automatic categorization problems. 

Modern designs and pre-trained networks are already available and 

may be modified and improved to tackle more recent classification 

jobs. These networks often consist of many layers that are coupled 

to one another and have numerous parameters per layer. One family 

of deep neural networks called Convolutional Neural Networks 

(CNN) is most frequently used to analyze visual images. CNN has 

shown remarkable effectiveness in several computer vision tasks, 

which has led to the most recent trend in VPR research [9]. As a 

result, several authors have used the activations of specific CNN 

layers to provide visual representations that are appropriate for 

addressing the VPR issue [10]. Visual place recognition can be 

challenging due to various issues, such as perceptual aliasing. 

Places are not always revisited from the same viewpoint and 

position as before, and environments where multiple places may 

appear strikingly similar, with appearances that can change 

dramatically [11]. 

In particular, visual location identification plays a crucial role in 

visual Simultaneous Localization and Mapping (vSLAM) loop 

closure detection, which removes accumulated errors. Furthermore, 

precise pose and map in vSLAM systems require a strong tracking 

module. However, in real-world applications, tracking failure is 

unavoidable because of factors including quick motion, hazy 

images, unexpected shifts in the camera's visual perspective, texture 

deficiency, etc. As a result, a powerful relocalization module is 

essential.  

Two key elements are used in contemporary feature-based 

vSLAM systems to relocalize the robot. Visual place recognition 

(finding potential keyframes) is the first phase, and key point 

feature matching (metric localization) is the second phase. In large-

scale localization and mapping, trajectory drift and the construction 

of an unclear map of an unknown environment are inevitable 

without precise visual place recognition [12]. The foundation of 

many 3D computer vision applications, such as SLAM, is local 

feature matching between images. The majority of matching 

techniques now in use split an image into three stages: feature 

matching, feature description, and feature detection [13].  

During the detection stage, each image's important features, 

such as corners, are initially identified as interest points. After that, 

local descriptors are retrieved from the areas surrounding these 

interest sites. Two sets of interest points with descriptors are 

produced during the feature detection and description phases. The 
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point-to-point correspondences between these sets of points are 

then discovered using more complex matching algorithms like 

closest neighbor search [14]. Using a feature detector narrows the 

matching search space, and the resulting sparse correspondences 

are enough for the majority of applications, such as estimating 

camera posture. However, due to a variety of issues, including 

inadequate texture, repeating patterns, perspective changes, lighting 

variations, and motion blur, a feature detector may not be able to 

extract enough recurrent interest spots across images [15]. 

In mobile robotics, autonomous navigation is crucial, as it 

allows robots to navigate and adapt to complex and dynamic 

environments. A visual map scheme is a map of images that serves 

as the basis for a robot navigation strategy that employs a vision 

system as its only sensor. This strategy's representation can be 

thought of as a topological map, with key images serving as the 

visual cues for each node in the environment [16]. The learning 

phase will be the main emphasis of this study to extract the best 

possible visual map from the surroundings for visual localization 

and self-navigating.  

 Successful vSLAM implementations assess the effectiveness 

and efficiency of popular feature detectors and descriptors like 

SIFT, SURF, ORB, BRISK, and AKAZE in matching consecutive 

images, alongside algorithms like Nearest Neighbor (NN) for 

keypoint set matching and Homography based on RANSAC to 

reject outliers, particularly in underwater environments [17]. 

The study analyzes four feature detection and description 

methods—ORB, BRISK, KAZE, and Accelerated KAZE—and 

three outlier rejection methods—RANSAC, GC-RANSAC, and 

MAGSAC++. The analysis involves both visual and quantitative 

assessments to determine the most accurate and robust registration 

method for the histopathological dataset. Evaluation metrics such 

as the number of detected key points and inliers are used to evaluate 

the performance of different pairs of feature detection-description 

methods and outlier rejection algorithms [18]. 

In the realm of state-of-the-art advancements, a hardware 

implementation of the ORB algorithm on a heterogeneous SoC 

FPGA device. To validate hardware design, the researcher 

performed a comparative analysis against a software model. This 

software model was developed using functions from the OpenCV 

library, including feature point matching from the FLANN 

submodule, the RANSAC algorithm for inlier identification, and 

the computation of the homography matrix. Both the outputs from 

OpenCV's ORB and hardware implementation were used as inputs 

to the software model, enabling a comprehensive evaluation based 

on key metrics such as the number of inliers, matching rate, rotation 

error, and translation error [19]. 

 As far as the authors are aware, there is limited documentation 

that thoroughly examines the use of feature detectors and 

descriptors for mobile robot navigation, specifically employing 

Local Feature Transformer (LoFTR) and the MAGSAC++ 

estimator to match two images based on the number of inliers. 

A novel method is proposed based on a detector-free approach 

to local feature matching that enables the production of feature-rich 

visual maps for outdoor situations. To generate a visual control 

policy between two consecutive key images, our deep learning 

approach uses pre-trained Local Feature Transformer (LoFTR) 

[20]. Additionally, a geometry constraint is used to ensure that the 

images share features using the MAGSAC++ [21] estimator to 

match two images with different perspectives of the shot and 

identify the same key points. Moreover, in this paper, this paper 

investigates the impact of the number of inliers on the similarity of 

key images under shift, scale, and occlusion circumstances, 

conducting extensive tests and making quantitative and visual 

comparisons between images. The next step is to calculate the least 

number of inliers for images when the locations are about the same 

and the maximum number of inliers to show that the two images are 

not the same.  

2 Research Methods 

LoFTR, short for Local Feature-based Transformer, is a recent 

approach that combines local feature matching with transformer 

networks for accurate and efficient visual localization tasks. It 

leverages the strengths of both traditional feature-matching 

techniques and modern deep learning approaches to achieve state-

of-the-art performance in tasks such as visual odometry and 

Simultaneous Localization and Mapping (SLAM). MAGSAC++, 

on the other hand, stands for marginalizing sample consensus. It is 

an improved version of the RANSAC algorithm, which is 

commonly used for outlier rejection in computer vision tasks. 

MAGSAC++ provides a more robust estimation of model 

parameters by marginalizing the outlier probabilities, leading to 

more accurate and reliable results, especially in challenging 

environments with a high percentage of outliers. Together, LoFTR 

and MAGSAC++ form a powerful combination for matching 

images in scenarios like mobile robot navigation, where accurate 

feature matching and outlier rejection are crucial for reliable 

performance. 

This research method has 4 stages, including the selection of 

images from the dataset, the selection of detectors for local feature 

matching, the selection of estimators, and visual place evaluation. 

2.1 Dataset 

The dataset used is the Banda Aceh city dataset which has 400 

images with resolution 800×600 pixels. The Banda Aceh city 

dataset features daytime traverses captured in an urban setting by a 

motorcyclist, resulting in modest condition differences and 

considerable perspective alterations. Many dynamic elements, 

including moving and parked cars, pedestrians, goods rickshaws, 

and motorcycles, are present in this metropolitan setting. The 

majority of the time, there is also an abundance of greenery that 

obscures more static and distinctive structures like buildings. 

Sixteen images selected from this dataset, as depicted in Fig. 1, 

are used to evaluate visual place recognition between two images 

by considering the number of inliers. The number of inliers will 

determine the similarity of places based on the scale and translation 

of the two images. 

2.2 Pre-Trained Detector-free Local Feature Matching 

End-to-end local feature matching is accomplished using the 

detector-free deep neural network architecture known as a pre-

trained Local Feature Transformer (LoFTR) [20]. The LoFTR 

indoor model has been trained using the ScanNet [22] dataset and 

the outdoor model on the MegaDepth [23]. ScanNet has 230 million 

image pairings for training and 1613 monocular sequences with 

ground truth postures and depth maps. One million online images 

from 196 distinct outdoor scenes make up MegaDepth. Matching 

amid drastic perspective shifts and repeating patterns is 

MegaDepth's main challenge. On several datasets, LoFTR produces 

state-of-the-art results in relative posture estimation and visual 

localization [20]. 

Patch embedding, multi-scale transformer network, local 

feature descriptor, and geometric verification are its four primary 

parts. First, a multi-level feature vector representation of an image 

patch is computed by the patch embedding component. Second, to 

obtain local feature information at various scales, the multi-scale 

transformer network processes the feature vector of picture patches. 

Subsequently, the transformer network output is mapped to a fixed-

length feature descriptor by the local feature descriptor, which 

records the i-th image patch's local geometry and appearance. After 

extracting feature descriptors from both images, geometric 

verification finally calculates a homography matrix that aligns two 

images based on the matched features. On an NVIDIA T4 with 

12.67 GB of GPU RAM, the pre-trained model with 11.56 million 

parameters processes a 640×480 image pair in 116 ms.  
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Dataset #41 

 
Dataset #43 

 
Dataset #47 
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Dataset #51 

 
Dataset #61 

 
Dataset #62 

    
Dataset #179 Dataset #180 Dataset #200 Dataset #201 

Fig 1. Selected dataset for evaluation. 

 

In this research, to achieve location similarity between two 

images, we utilize a division of inlier regions into low, medium, and 

high categories. The high region represents areas with nearly 

identical locations, no obstacles, and equal distances from the 

camera with low differences in translation and scale. The number 

of inliers for the high region is greater than 1000. The medium 

region comprises areas where locations are similar, but some parts 

of the image are obstructed or have different scales, resulting in not 

all key points in image 1 matching with image 2. The number of 

inliers for the medium region is greater than 150 and less than 1000. 

The low region includes areas where the locations of image 1 and 

image 2 are dissimilar, with the lowest number of matching inliers 

less than 150. The use of a range for confidence values is due to 

pre-trained LoFTR and MAGSAC++ having a high number of 

inliers for similarity between the same two images, allowing for the 

division into three distinct regions to determine the location 

similarity between two images. 

2.3 Estimator 

RANSAC is a popular estimator for several multimedia 

applications, such as feature matching, and is considered a reliable 

tool for model fitting [24]. In addition to its ease of implementation, 

RANSAC has the appealing feature of having few adjustment 

parameters. However, when dealing with expansive baseline 

scenarios, multiple viewpoints, flexible movements, and a 

significant number of discrepancies in the assumed 

correspondences, RANSAC also faces efficiency and robustness 

issues. To remove the threshold from the model quality 

computation, Barath et al. [25] presented the Marginalizing Sample 

Consensus technique (MAGSAC), which involves marginalizing 

over the noise σ. 

In addition to not requiring a threshold to be manually 

established, the MAGSAC method was shown to be much more 

accurate than existing robust estimators on a variety of issues across 

many datasets. Modern robust estimators are inferior to 

MAGSAC++ and P-NAPSAC [26] samplers in terms of rate of 

failure, velocity, and precision. 

2.4 Visual Place Evaluation 

Following the completion of the data set image selection, we use 

pre-trained LoFTR's deep learning technique to compare the 

images. The tests were carried out in Google Colaboratory and 

implemented in Python using Kornia [27], a PyTorch Open Source 

Computer Vision Library. The basic matrix was used in geometric 

validation together with MAGSAC++ for feature-matching 

refinement (outlier identification). 

The number of images used in the experiment was 16 images 

with image composition related to scale enlargement and location 

shift. Images from different locations are compared. In scale 

enlargement mode, the effect on the number of inliers produced and 

the influence of the scale enlargement multiplier factor on the 

number of inliers are examined. For the location shift mode, the 

effect of the shift distance on the number of inliers produced is 

investigated. The effect of images being at different locations will 

also be reviewed to see the maximum number of inliers to state that 

the two images are not at the same location. In Fig. 1, the images 

used in the experiment are shown with the image name in the form 

of a number. 

3 Results and Discussion 

3.1 Proposed Method 

Pre-trained LoFTR is used for local feature matching between 

images, and MAGSAC++ is employed as a robust estimator to 

determine the number of inliers in establishing whether the two 

images share the same location. Sixteen images from this dataset 

are selected to evaluate visual place recognition between two 

images by examining the number of inliers. The number of inliers 

will determine the similarity of places based on the scale and 

translation of the two images. The experiment will determine areas 

of inlier values for the same and unequal locations. 

The matches show the qualitative outcomes. Lines joining the 

matching feature points in two images indicate matches. It creates 

lines that represent the best matches between the first and second 

images by stacking them horizontally. Quantitative results are 

displayed in a table that has: the identity of the source image and 

the destination image, the type of relationship applied to the 

destination image to the source image, the number of inliers 

obtained, and the grouping of image similarities in the high, 

medium and low areas. The grouping results for high and medium 

are a reference that both images are in the same location while for 

low they are in different locations. 
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3.2 Experiment 

An experiment was conducted aimed at generating both 

quantitative and qualitative data. Quantitative data were obtained 

by assessing the number of inliers during the feature-matching 

process between image pairs. On the other hand,                                                              

qualitative data included the color of the matching feature lines. 

Sixteen images were selected to assess the performance of pre-

trained LoFTR in the matching process between two images, which 

will generate the number of inliers based on the level of similarity—

specifically, high, medium, and low. Numbers of inliers were 

obtained by matching between 2 images using lines connecting key-

points. The matches that meet the fundamental matrix constraint are 

shown in red lines for high confidence value and blue lines for low 

confidence value otherwise between red and blue lines. Images 

from the same location are compared, as shown in Fig. 2, displaying 

3225 matched points between key images for dataset #200 and 

dataset #201 obtained with LoFTR+MAGSAC. The red line 

indicates that many lines have a high confidence value. Pre-trained 

LoFTR produces a high number of inliers because dataset #200 is 

shifted 1 meter to the right compared to dataset #201. Then there is 

no change in scale and viewpoint rotation. 
 

 
Fig. 2. Matched points between key images for dataset #200 and 

dataset #201. 
 

The effect of occlusion that occurs in dataset #43 is shown in 

Fig. 3, displaying 490 matched points between key images for 

dataset #41 and #43 obtained with LoFTR+MAGSAC. 
 

 
Fig. 3. Matched points between key images for dataset #41 and 

dataset #43. 
 

The number of inliers produced fell below 1000. There are still 

red lines connecting between images #41 and #43, indicating that 

both images are in the same location even though the mosque 

building is partially closed. 

The number of inliers typically refers to the number of matched 

feature points between two images. During the comparison process, 

datasets #200 and #201 have the same distance from the camera. 

They feature a small vehicle obstacle, leading to only a few key 

points not matching and resulting in 3225 inliers. Datasets #41 and 

#43 have an obstacle relationship, whereas dataset #43 has a large 

obstacle in the form of a tree, causing not all key points to match 

with dataset #41, resulting in 490 inliers. In datasets #179 and #180, 

there are different distances from the camera at the same location, 

leading to a scaling process that causes not all key points to match 

between the two images. When the number of inliers is lower for 

images with obstacles compared to images without obstacles, it 

suggests that matching key points between the two images is more 

challenging in the presence of obstacles. Obstacles can obscure or 

alter the appearance of visual features in an image. This ambiguity 

can make it challenging for algorithms to accurately match key 

points. 

Changes in scale or enlargement of objects produce inlier values 

below 1000 because not all parts of dataset #83 are contained in 

image #84. Fig. 4 depicts 424 matched points between key images 

for dataset #83 and dataset #84 obtained with LoFTR+MAGSAC. 

Several red lines have a high confidence value between dataset #83 

and #84, dataset #84 is the result of enlarging the scale of dataset 

#83 with the center position on the goods rickshaw. 

 

 
Fig. 4. Matched points between key images for dataset #83 and 

dataset #84. 

 

Experiment with shifting the image a fairly long distance, as in 

dataset #62 versus dataset #61. Fig. 5 shows 195 matched points 

between key images for datasets #61 and #62 obtained with 

LoFTR+MAGSAC. The left part of dataset #61 is in the middle of 

dataset #62 and the red line is still visible connecting these two 

datasets which are still in the same location. This inlier value is the 

lowest value obtained from image comparisons for the same 

location. 

 

 
Fig. 5. Matched points between key images for dataset 61 and 

dataset 62. 

 

The number of inliers produced was also tested when using 2 

images with different locations. Fig. 6 displays 133 matched points 

between key images for datasets #41 and #200 obtained with 

LoFTR+MAGSAC. The two images are not in the same location. 

This can be identified by the absence of red lines and the many lines 

that intersect each other. The number of inliers for dissimilar images 

is 133. 

The effect of location dissimilarity on the number of inliers was 

tested for different locations. Fig. 7 displays 121 matched points 

between key images for datasets #47 and #48, which are in different 

locations. Even though there is a red line, this value is the lowest 

compared to the number of inliers that have been carried out in 

previous evaluations. The red line which has a high confidence 

value still appears even though the two places are not the same.  
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Fig. 6. Matched points between key images for datasets #41 and 

#200. 

 

 
Fig. 7. Matched points between key images for dataset 47 and 

dataset 48. 

 

Quantitative evaluation results of pre-trained LoFTR are 

provided in Table 1. In Table 1, there are 3 relationships between 

the two images, namely trans (translation), obs (obstacle), and 

scale. Our experiment demonstrates that the number of inliers can 

determine the similarity of locations between two images. Scale 

variations and translation in location significantly influence the 

resulting number of inliers. A count of inliers exceeding 1000 

indicates that both images are in the same location with no obstacles 

and small translations. For images subjected to scale enlargement, 

viewpoint translation, and obstruction, the number of inliers ranges 

from 180 to 600. Meanwhile, for images not in the same location, 

the number of inliers is less than 150. Qualitatively, the appearance 

of the red line is not related to the similarity or dissimilarity of the 

locations. Quantitatively, the number of inliers has a big influence 

on location similarity. 

  

Table 1. Visual place recognition with pre-trained LoFTR for 

selected Banda Aceh city dataset. 

Image1 Image2 Relation Inliers Similarity 

50 51 trans 3019 high 

128 129 trans 2749 high 

200 201 obs 3225 high 

179 180 scale 580 medium 

41 43 scale 490 medium 

83 84 scale 424 medium 

61 62 trans 195 medium 

41 200  133 low 

47 48  121 low 

 

An innovative approach to feature matching in local images is 

introduced. It is suggested that pixel-wise dense matches be 

established at a coarse level and then refined at a fine level, rather 

than conducting image feature recognition, description, and 

matching sequentially. Unlike dense approaches that search 

correspondences using cost volume, Feature descriptors are 

extracted conditioned on both images using Transformers' self and 

cross attention layers. Our technique may generate dense matches 

in low-texture environments, where feature detectors often fail to 

create repeating interest sites, thanks to Transformers' global 

receptive field. 

4 Conclusion 

This paper introduced a unique detector-free matching 

technique called LoFTR, capable of constructing accurate semi-

dense matches using transformers in a progressive and detailed 

manner, providing a revolutionary framework for visual location 

identification for autonomous mobile robots. For LoFTR to achieve 

high-quality matches on indistinctive regions with poor texture or 

repeating patterns, the pre-trained LoFTR module uses 

transformers' self and cross-attention layers to change the local 

characteristics such that they rely on context and location. The 

MAGSAC++ estimator and P-NAPSAC sampler are used to 

generate the number of inliers. Visual place recognition between 

two images is evaluated by examining the number of inliers, using 

a selection of 16 images from the Banda Aceh city dataset. The 

number of inliers will determine the similarity of places based on 

the scale and translation of the two images. The number of inliers 

significantly influences the similarity of locations. At the same 

location, the number of inliers is above 150, while at different 

locations, the number of inliers is below 150. 

Different scales, translations, and obstacles have a great impact 

on the number of inliers. These effects can result in fewer key points 

being matched correctly, leading to a decrease in the number of 

inliers. The image scale represents the distance of the image from 

the camera; a greater difference in distance between the two images 

and the camera results in a smaller number of inliers. This is 

because not all key points match. The influence of translation 

causes a small number of key points on the sides of the image to not 

match, yet the number of inliers remains above 1000. In obstacle 

mode, the size of the obstacle area within the image will determine 

the number of inliers produced.  

Including a quality metric to identify similar characteristics in 

local images, using the number of inliers, is suggested to address 

the problem of visual place recognition. Near-perfect identification 

is achieved across most image pair comparisons using this strategy. 

Pre-trained LoFTR exhibits improved matching accuracy and 

decreased mismatches, which effectively tackles issues related to 

low-texture areas large perspective, and small translation. 
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