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Abstract 

The manufacturing sector is constantly seeking ways to optimize 

the machining process, specifically for 3-axis CNC machines. 

This study aims to identify the optimal parameter values that 

result in the lowest roughness and the highest process capability 

in 3-axis CNC milling. The roughness level (Ra) of the product is 

primarily influenced by factors such as feed rate, spindle speed, 

and depth of cut. Additionally, the reliability of the machining 

process was analyzed to evaluate its ability to consistently 

achieve low roughness values and to validate the process 

capability of the VH850L3 series 3-axis CNC milling machine. 

The suggested approach for this analysis was the RSM central 

composite design method, which involved conducting 

experiments under various input conditions. The results indicated 

that the feed rate had the most significant impact on roughness, 

followed by the spindle speed, while the depth of cut had no 

effect. The parameters that resulted in the lowest roughness 

response were a spindle speed of 2589.76 rpm, a depth of cut of 

0.159 mm, and a feed rate of 247.731 mm/min. These parameter 

values were tested on a 3-axis CNC machine, and the resulting 

data exhibited variations. Data processing revealed that the 

machine still performed optimally in the machining process, as 

indicated by the value of           . However, the milling 

process deviates from the standard target, as the response value 

shows significant variation with a Cpk value <1. 
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1 Introduction 
The Computer Numeric Control (CNC) milling machine 

consists of two or more axes that dictate tool movement. These 

movements can be linear (straight lines) or circular (following 

circular paths). Typically, the X, Y, and Z axes control linear 

movements, while the A, B, and C axes control circular 

movements. The CNC milling process relies on the spindle's 

rotational speed and the control of the feed rate to achieve precise 

machining [1]. To enhance consumer value, it is crucial to ensure 

high-quality machining during the manufacturing process.  

In recent decades, CNC machines have become indispensable 

owing to their high reliability, increased accuracy, and improved 

productivity levels. Compared with conventional milling 

processes, CNC milling offers greater flexibility in selecting the 

parameter levels. Various milling processes are employed in the 

manufacturing industry, including peripheral, face, and end 

milling [2-3]. Each machining process requires regulation of 

numerous parameters. These parameters can be classified as 

controllable or uncontrollable. Controllable parameters such as 

spindle speed, cutting speed, rake angle, depth of cut, and feed 

rate can be adjusted as needed. On the other hand, uncontrollable 

parameters, such as tool wear, surface roughness, vibration, and 

geometric accuracy, cannot be directly controlled. 

Achieving optimal surface roughness is a critical aspect of the 

milling process to produce high-quality products. Surface 

roughness in milling processes typically exhibits distinct 

characteristics, making it the focus of many research studies. 

One study recommends using the smallest feed rate during the 

finishing process and a larger feed rate during roughing to 

optimize time and cost in the milling process [4]. The feed rate is 

identified as the most crucial machine input parameter influencing 

surface roughness, surpassing the impact of the depth of cut and 

spindle speed [5]. Permanent function variations can be calculated 

by adjusting the diagonal element values to account for parameter 

and cutting condition variations [6]. Increasing cutting speed 

results in a reduction in surface roughness when the feed rate is 

decreased [7]. Utilizing a systematic approach in central 

composite design proves beneficial as it minimizes the number of 

required experiments. According to Asiful H. Seikh et al., the 

surface roughness model indicates that the radial depth of cut 

contributes the most (45.81%) and has the greatest impact on 

surface roughness [8]. R. Suresh Kumar et al. also conclude that 

optimizing machining parameters in low carbon steel milling 

processes affects surface roughness, Material Removal Rate 

(MRR), power consumption, and tool life, but with contradictory 

impacts [9]. Results from ANOVA analysis demonstrate that the 

parameters significantly affecting surface roughness are spindle 

speed (42.42%), feed rate (29.40%), and cutting depth (6.59%), 

respectively. Meanwhile, according to Chi Thien Tran et al., the 

parameter with the most significant influence on the milling 

process is the feed rate (92.6%) [10]. By using a backpropagation 

neural network, the Root Mean Square Error (RMSE) was 

calculated to be 0.008, which is significantly smaller than the 

0.021 obtained with conventional linear regression, as shown by 

Chen, C.-H, et al. [11]. Analysis of the substrate and machine 

surfaces using XRD revealed that the broad diffraction peaks 

mostly consisted of α-Fe, according to Wu et al. [12]. Taguchi 

design can optimize milling process parameters for surface 

roughness [13-15]. Other researchers have argued that the 

response surface method is effective for optimizing data [16-20]. 

Process capability index is a measure of a product's ability, 

measured by the actual or potential execution of procedure 

attributes, with specific goals and parameter points. Cp has 

become the most frequently used index in practice because it 

imposes limits on the division of defective item procedures. This 

is an essential concept in statistical process control that describes 

the strength of a process to produce components within tolerance 

limits [21-22]. 

The literature review of the journal revealed extensive research 

in the field of machining using optimization methods. This study 

focused on efforts to optimize surface roughness (Ra) on 

workpieces using the response surface method. Subsequently, the 

minimum roughness data obtained from the response surface 

method were used as actual data in the machining process and 

processed based on statistical process capability indices to 

measure the efficacy of the ongoing process. Process capability 

served as a valuable parameter for consideration. 

2 Methods and Implementation 

This research aims to investigate the primary factors 

influencing the surface roughness of 6061 series aluminum with 

dimensions of 107×70×15 mm (2 pieces). The study employs a 3-

axis CNC Milling machine series VH850L3 and an HSS flat end 

mill with a diameter of Ø 10 mm and 4 flutes. For the CNC 

milling process, facing or cutting techniques were chosen with 

clockwise movement to attain a flat surface perpendicular to the 

cutting rotation axis. The parameters tested included spindle 
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speed, feed rate, and cutting depth. The methodology employed 

involves the response surface method and mathematical modeling 

to determine the minimum value of surface roughness. Moreover, 

the minimum roughness data obtained from the response surface 

method were utilized as the actual data in the machining process. 

The sequential research approach is: 

1. Determination of levels for each parameter 

2. Experiments are conducted based on central composite design 

3. Measurement of surface roughness 

4. Analyzing the influence of parameters 

5. Determination of the minimum roughness value obtained from 

response surface method data 

6. Experimental runs are conducted with 10 replications using the 

minimum roughness value data 

7. Application of capability process analysis for CNC milling 

machine optimization 

8. Confirmatory runs are conducted to validate the achieved 

results. 

2.1 Controlled and Uncontrolled Parameters 

A machining process is greatly influenced by parameters such 

as spindle speed, feed rate, and depth of cut. Among these 

parameters, some can be set before the process begins, known as 

controllable parameters. The parameters in Table 1 of the CNC 

milling process (23) are varied with attractive values. On the other 

hand, there are certain parameters that fluctuate based on these 

parameters, known as uncontrollable parameters. In this study, the 

controllable factors are spindle speed (A), depth of cut (B), and 

feed rate (C), with a measurement distance on the surface 

roughness of 2.5 mm while surface roughness (Ra) becomes the 

uncontrollable response. The dependent variables in this research 

include the use of a 3-axis CNC milling machine series VH850L3, 

which has completed many projects; a flat endmill made of HSS 

with a diameter of Ø 10 mm and four flutes (Fig. 1); and 

aluminum duralium 6061. The instruments used in this study 

include a roughness tester (Surface Roughness Tester Landtek 

SRT-6200 Gloss Meter SRT6200 Glossmeter) as shown in Fig. 2. 

 

Table 1. Experimental parameters 

Parameter Unit Low High 

Spindle speed (A) rpm 1450 2300 

Depth of cut (B) mm 0.5 1.5 

Feed rate (C) mm/min 350 650 

 

 
Fig. 1. Endmill HSS (10 mm 4 flute). 

 

 
Fig. 2. Surface roughness tester. 

The initial stage of the research involved preparing 14 tools 

and specimens. Each specimen was used in a single experiment, 

with a new flat end mill employed for each to ensure minimum 

surface roughness data.  

The next step involved setting the zeropoint using Sentrofix 

(Fig. 3). The G-code program (Fig. 4) is input into the CNC 

milling machine to execute the program according to the desired 

workpiece design (Fig. 5). The software used was the 

MastercamX5. This process was repeated 14 times to conduct 14 

experiments using various parameters. 

 

 
Fig. 3. Zero setting process. 

 

 
Fig. 4. G-code program. 

 

 
Fig. 5. Simulation of G-code program in MastercamX5. 

2.2 Design Matrix 

In the first experimental iteration, a central composite design 

with a two-level factorial, three factors, eight cube points, six 

center points in the cube, and zero center points in the axial 

direction were used, as outlined in Table 1. The detailed sequence 

of experimental runs for the central composite design can be seen 

in Table 2. In each experiment, a new endmill was used. 
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Table 2. Runs experimental cental composite design 

A (rpm) B (mm) C (mm/min) 

1450 0.5 350 

2300 0.5 350 

1450 1.5 350 

2300 1.5 350 

1450 0.5 650 

2300 0.5 650 

1450 1.5 650 

2300 1.5 650 

1875 1 500 

1875 1 500 

1875 1 500 

1875 1 500 

1875 1 500 

1875 1 500 

 

The second experimental iteration was based on the CNC 

milling machine's process capability using the data from the 

experimental parameters with the minimum roughness in Table 5. 

Subsequently, 10 replications of experiments were conducted, as 

shown in Table 6. 

3 Results and Discussion 

After the machining process on the CNC milling machine, 

surface roughness testing was conducted using a surface 

roughness tester. Calibration was performed before the surface 

roughness tester was used. The measurement length (cutoff 

length) was set to 2.5 mm, and the workpiece was placed on a 

level surface (Fig. 6). Measurements were repeated three times, 

and the average of these repetitions was taken to obtain one 

roughness value for each specimen. 

The data obtained from the testing werre analyzed to determine 

the minimum roughness value and the more dominant influence 

on the machining parameters.  

Subsequently, the results of parameters with low roughness 

values were elaborated to validate the process capability in CNC 

milling 3-axis VH850L3 series, whether it operated well or not, by 

observing the consistency of data on the roughness values of the 

machining process parameters. 

 

 
Fig. 6. Data measurement. 

3.1 Response Surface Method  

The test results data and combinations shown in Table 3 will 

be further analyzed using the response surface method and 

ANOVA to determine the influence of parameters on the 

roughness value. Minitab 20 software was used to expedite the 

analysis process and statistical calculations. From the 14 

experimental runs conducted, maximum, minimum, average, 

standard deviation, and ratio values for each response and factor in 

the roughness test are obtained, as shown in Table 4. 

By conducting a two-way Analysis of Variance (ANOVA), 

which consists of calculating the sum of squares, degrees of 

freedom, means, and F-values, statistical ANOVA data for surface 

roughness testing are obtained, as shown in Table 4. 

Data processing in this experiment was completed using a 

Minitab 20. In Table 4, it is known that by adjusting the spindle 

speed and feed rate, there is a significant difference, which has 

been shown in the table that p-values are 0.013 (>0.05) and 0 

(>0,05). The p-value of the feed rate indicated that the feed rate 

parameter was highly influential, with a p-value of 0. However, 

unlike the p-value, the depth of cut values has no significant 

impact, where p-values are 0.611 (<0.05). The lack-of-fit test in 

this experiment against the model obtained a p-value of 0.652, 

indicating that H0 accepted means the regression model matched. 

 

Table 3. Results of surface roughness testing 1
st
 orde 

Actual variables Code variable 
Response (y) 

X1 X2 X3 A B C 

1450 0.5 350 -1 -1 -1 2.902 

2300 0.5 350 1 -1 -1 2.439 

1450 1.5 350 -1 1 -1 3.012 

2300 1.5 350 1 1 -1 2.619 

1450 0.5 650 -1 -1 1 8.960 

2300 0.5 650 1 -1 1 7.594 

1450 1.5 650 -1 1 1 9.438 

2300 1.5 650 1 1 1 7.543 

1875 1 500 0 0 0 4.711 

1875 1 500 0 0 0 5.555 

1875 1 500 0 0 0 4.901 

1875 1 500 0 0 0 5.906 

1875 1 500 0 0 0 5.084 

1875 1 500 0 0 0 5.939 

 

Table 4. Data analysis of variance 1
st
 orde 

Source DF Adj SS Adj MS F-value P-value 

Model 3 65.8191 21.9397 94.07 0.000 

  Linear 3 65.8191 21.9397 94.07 0.000 

    X1 1 2.1187 2.1187 9.08 0.013 

    X2 1 0.0643 0.0643 0.28 0.611 

    X3 1 63.6361 63.6361 272.84 0.000 

Error 10 2.3324 0.2332   

  Lack-of-fit 5 0.9536 0.1907 0.69 0.652 

  Pure error 5 1.3788 0.2758   

Total 13 68.1515    

 

Based on the ANOVA test and the lack of fit model order I 

test, there are two variables that have a significant influence on the 

response. So, to proceed with the analysis on the assumption of 

the phase 2 experiment model, it is necessary to carry out the 

analysis to see the direction in which the stage 2 experiment will 

be carried out. The response surface method II model was 

designed using a central composite design full quadratic. The 2
k
 

factorial design used in the order I design was added with an axial 

point and center point. It is known that there are three free 

variables; therefore, it is necessary to add an axis point of as many 

as 2k, where k is a factor. Therefore, six axial points are required 

in the study of the surface response model order II. 

Data processing is then carried out to see the results of the 

response surface method order 2. The data processing results are 

shown in Table 6. 

In hypothesis testing, H0 means that the model fits or there is 

no lack of fit (>0.005). Meanwhile, H1 the model does not fit or 

there is a lack of fit (<0.005).  

From the lack of test on the second-order model, the p-value = 

0.191 or greater than the significance degree α = 0.05, so there is 

no reason to reject H0. This indicated that the regression model 

was suitable. Based on the analysis results, the model is obtained 

as shown in Fig. 7. 

 
Ra = -6.17 + 0.00545 X1 + 3.36 X2 + 0.0050 X3 - 0.000001 X12 - 1.117 

X22 + 0.000022 X32 - 0.00027 X1 X2 - 0.000005 X1 X3+ 0.00023 

X2 X3 

Fig. 7. Regression equation. 
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Table 5. Data analysis of variance 2
nd

 orde 

Actual variables Code variable 
Respon (y) 

X1 X2 X3 A B C 

1450 0.5 350 -1 -1 -1 2.902 

2300 0.5 350 1 -1 -1 2.439 

1450 1.5 350 -1 1 -1 3.012 
2300 1.5 350 1 1 -1 2.619 

1450 0.5 650 -1 -1 1 8.96 

2300 0.5 650 1 -1 1 7.594 
1450 1.5 650 -1 1 1 9.438 

2300 1.5 650 1 1 1 7.543 
1875 1 500 0 0 0 4.711 

1875 1 500 0 0 0 5.555 

1875 1 500 0 0 0 4.901 
1875 1 500 0 0 0 5.906 

1875 1 500 0 0 0 5.084 

1875 1 500 0 0 0 5.939 
2589.76 1 500 1.68 0 0 2.898 

1160.24 1 500 -1.68 0 0 5.91 
1875 1.84 500 0.00 1.68 0 5.489 

1875 0.16 500 0.00 -1.68 0 2.94 

1875 1 752.27 0.00 0.00 1.68 10.848 
1875 1 247.73 0.00 0.00 -1.68 1.954 

 

Table 6. Data analysis of variance 2
nd

 orde 

Source DF Adj SS Adj MS F-value P-value 

Model 9 117.714 13.079 28.73 0.000 

 Linear 3 111.092 37.031 81.34 0.000 

   X1 1 6.174 6.174 13.56 0.004 

   X2 1 1.833 1.833 4.03 0.073 

   X3 1 103.085 103.085 226.44 0.000 

 Square 3 5.870 1.957 4.30 0.034 

   X1
2
 1 0.650 0.650 1.43 0.260 

   X2
2
 1 1.124 1.124 2.47 0.147 

   X3
2
 1 3.513 3.513 7.72 0.020 

 2-way interaction 3 0.752 0.251 0.55 0.659 

   X1* X2 1 0.026 0.026 0.06 0.815 

   X1* X3 1 0.723 0.723 1.59 0.236 

   X2* X3 1 0.002 0.002 0.01 0.944 

Error 10 4.552 0.455   

 Lack-of-fit 5 3.174 0.635 2.30 0.191 

 Pure error 5 1.379 0.276   

Total 19 122.266    

 

 
Fig. 8. The surface plot graph of the interaction spindle speed and 

depth of cut. 
 

The interaction of parameters depicted in Fig. 9 indicates that 

the minimum roughness is achieved when the depth of cut is at 

0.159 mm and spindle speed is at 2589.76 rpm. For the maximum 

roughness, it occurs at a depth of cut of 1.84 mm and a spindle 

speed of 1160.24 mm/min. Any deviation from these levels results 

in adverse effects on the    response. 

 
Fig. 9. The surface plot graph showing the interaction feed rate 

and spindle speed. 
 

In Fig. 10, the minimum value of the interaction parameter 

between spindle speed and feed rate occurs at spindle speed of 

2589.76 rpm and feed rate of 247.73 mm/min. The mutual 

interaction of the parameters is evident in Table 3, where 

increasing the spindle speed and decreasing the feed rate resulted 

in a lower roughness value. 
 

 
Fig. 10. The surface plot graph illustrating the interaction depth of 

cut and feed rate. 
 

In Fig. 11, the interaction depicted shows no mutual influence 

between spindle speed and depth of cut parameters. The minimum 

value is obtained when the depth of cut is at 0.159 mm and the 

feed rate is 247.73 mm/min. The maximum value occurred when 

the depth of cut is at 1.84 mm and the feed rate was 752.269 

mm/min. 
 

 
Fig. 11. The Pareto chart showing the influence of parameters on 

the Ra response. 
 

In Fig. 12, the data values indicate the influence of variable 

interactions on the response value. As shown in the graph, the feed 

rate parameter exhibited the greatest influence, with a bar value of 

15.048. In contrast, the spindle speed had a bar value of 3.682. 

The parameter with the least influence on the response value was 

the depth of cut, with a bar value of 2.006. 
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Fig. 12. Minimum response Ra. 

 

Fig. 12, shows the minimum response values the machining 

process parameters. The lowest roughness response value is 

indicated as shown in Table 7. 

 

 
Fig. 13. Chart capabillity process normal. 

 

Table 7. The optimum parameter level for roughness value. 

Spindle speed  

(rpm) 

Depth of cut  

(mm) 

Feed rate  

(mm/min) 

2589.76 0.159 247.73 

 

In Table 7, it indicates the optimum parameter levels with 

minimum response values. Accelerating the spindle speed and 

decreasing the depth of cut and feed rate resulted in reduced 

response values. 

3.2 Capabillity Process 

In this experimental study, several statistical calculations were 

performed to determine the reliability of the product using the 

process capability method. The parameters for measurement were 

based on data with minimum response values. Data collection for 

the response was conducted with three repetitions of the 

measurements using a surface roughness tester. In the capability 

process study, a 4-flute flat endmill is utilized, with each specimen 

used in a single experiment, employing a new flat endmill for 

each. 

In Fig. 13, data from Table 8 is utilized, detailing the 

parameters with the lowest response. The data extracted are the 

averages of three repetitions of roughness measurements for each 

specimen. The Lower Specification Limit (LSL) and Upper 

Specification Limit (USL) are obtained from the tolerance value 

table for roughness specifications according to the task (24). They 

are applied using the Eq. 1 and Eq. 2. 

 

    
                              

 
–                 (1) 

 

 

    
                              

  
                (2) 

 

Therefore, the USL value is obtained as 0.836025 µm and the 

LSL value is 1.67205 µm. Based on these roughness values, the 

face milling task is within the N6 - N7 roughness tolerance 

specification.  

 

Table 8. RSM data replication results 

Spindle speed Depth of cut Feed rate Ra 

2589.76 0.159 247.73 0.920 

2589.76 0.159 247.73 0.989 

2589.76 0.159 247.73 1.120 

2589.76 0.159 247.73 1.053 

2589.76 0.159 247.73 1.183 

2589.76 0.159 247.73 1.155 

2589.76 0.159 247.73 1.296 

2589.76 0.159 247.73 1.028 

2589.76 0.159 247.73 1.289 

2589.76 0.159 247.73 1.114 

 

The    value of 1.11 indicates that the milling process is 

considered capable of meeting the specified limits (<1.33).     
value of 0.74 suggests that the process is not close to its target 

value, and a     value of less than 1 indicates the possibility of 

deviations in machining response values from the standard target, 

as observed in the varying roughness values.  

 

 
Fig. 14. Fishbone diagram for surface roughness. 

 

The surface roughness results from the milling process, using 

the parameters suggested by the response surface method, are 

expected to yield products within specifications. After analyzing 

the process capability values, it's found that none deviate from the 

Lower Specification Limit (LSL) or Upper Specification Limit 

(USL) with          . However, the     values differed, 

indicating process deviations from the standard target, as shown in 

Table 8, where the response values varied considerably over a 

wide range. This discrepancy can be attributed to several factors; 

for instance, a machine in poor condition can significantly impact 

the surface roughness outcome of the machining process.  

The machine's unstable condition, caused by vibrations from 

the machine, tool, and spindle, results in vulnerable distance 

deviations in response values. Additionally, uncontrolled factors 

such as endmill angle, tool shape, and runout errors also influence 

surface roughness values. Cooling fluid also affects the milling 

process and consequently, the response values. 

4 Conclusion 

Optimizing the machining process parameters for aluminum 

alloy 6061 using CNC milling machines is of utmost importance, 

with the response variable being surface roughness. The stability 

of the roughness was significantly affected by variations in these 

parameters. Experiments were performed to determine the optimal 

parameters for the optimization. In addition, ANOVA was utilized 

to identify the parameters that had the most influence during the 
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machining process. The response surface method, a statistically 

robust technique with strong theoretical foundations, was 

employed to vary the parameters effectively. 

The capability process method is described in detail to validate 

the machining process on CNC milling machines. It utilizes 

parameters with low response values to ensure accuracy and 

reliability in the validation process. 

From these two problems, the data obtained were based on 

strong theoretical foundations: 

1. Minimum surface roughness is achieved with the combination 

of spindle speed 2589.76, depth of cut 0.159, and feed rate 

247.73 

2. Adjusting the spindle speed parameter showed a significant 

effect, as shown in the table with a p-value of 0.004 (>0.05). 

3. Adjusting the depth of cut parameter shows no significant 

difference, with a p-value of 0.073 (>0.05) 

4. p-value for the feed rate parameter has a significant difference, 

with a p-value of 0.000 (<0.05) 

5. The milling process is considered capable of meeting the 

specified limits           

6. Cpk value < 1 indicates deviations in machining process 

parameters from the standard target, as seen in the varying 

roughness values 

7. The causes of deviation in response values include 

uncontrolled variables such as machine vibrations, endmill 

angles, tool shape, runout errors, and cooling fluids. 
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