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Abstract 

The injection molding process is a manufacturing process that can 

produce products in a short time in large quantities, in the 

injection molding process the factor of setting process parameters 

plays a significant role in product quality, so it requires special 

treatment. The purpose of this study is to find the optimal 

parameters in the injection molding process of yogurt container 

lid with polypropylene material, so that the process can reduce the 

incidence of flashing defects that result in the emergence of initial 

waste in the industrial environment. The method used in this 

research was to create a Response Surface Methodology Box-

Behnken Design (RSM-BBD) optimization model and an 

Artificial Neural Network (ANN) model approach in analyzing 

optimal parameters and predicting the appearance of flashing 

defects in a designed cycle. The results obtained from this 

research were the optimal parameters from the RSM and ANN 

model recommendations, namely the clamping force setting of 70 

tons, holding time 0.1 seconds, and holding pressure. The ANN 

model provided the highest level of prediction accuracy with an 

R2 value of 100% and a prediction error rate of 7.9689E-09. In 

comparison, the RSM model obtained a prediction accuracy level 

with an R2 of 71% with an error rate of 0.24315. 
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1 Introduction 

The growth of the global plastics industry has increased 

significantly, the phenomenon can be seen in 2019 has touched 

USD 72.28 billion and is predicted to continue to grow [1]. The 

development of products made from plastic materials encourages 

economic improvement in the plastic industry sector; the injection 

plastic molding process, which is part of the industrial sector, also 

helps develop products or equipment needed by the community, 

such as machine components, electronic devices, food packaging, 

and even household appliances[2][3][4][5][6]. Injection plastic 

molding is one of the manufacturing processes that produce 

products with a high level of precision and can produce large 

quantities of products, and this is because the injection molding 

process applies high requirements followed by strict tolerances in 

the production process[7][8]. In the injection molding process, the 

main factor that affects product quality is parameter settings such 

as injection temperature, injection pressure, holding time, and 

several other parameters. The influence of parameter settings on 

the injection molding process is 60%-70%. Therefore, process 

parameters require special attention to produce quality products 

without defects [9]. Improper process parameters can cause 

several defects in injection molding products, such as short shots, 

flashing, bubbles, shrinkage, warpage, and burning[10]. These 

defective products can potentially create plastic waste, so action is 

needed to overcome this problem. 

One way to prevent the emergence of a product failure or 

defective product from the injection molding process is by quality 

design. Quality design development started from the design of 

experiments, Taguchi Method, and Response Surface 

Methodology (RSM) [9][11][12][13]. Designing a quality product 

using RSM method has advantages in determining the significance 

of interactions, the number of squares of parameters, visualising 

3D response surfaces, and of course optimising parameters. In 

particular, RSM-Box-Behnken is a popular method in the research 

industry in modelling a prediction and optimising parameters to 

meet the intended response variable[14]. Some studies use RSM 

as an optimization step to produce quality products, Ali [15] 

conducted research using the RSM method obtained optimal 

parameters at mold temperature 60°C, injection time 4 s, and the 

number of gates 2. From the optimization results, RSM can 

provide predictions of direct experiments by 85%. Not only that, a 

study from Miza optimization using RSM reduced the warpage 

value by 26% compared to the recommendation from the injection 

molding simulation software [16]. Along with the development of 

the manufacturing process, the injection molding process requires 

more accurate quality prediction. Artificial Neural Network 

(ANN) is a method part of Artificial Intelligence (AI) that has 

currently shown practical performance in the identification of a 

variable relationship containing complex nonlinearities. In 

addition, ANN can find a hidden pattern in data, so that to give 

consideration of the response variables such as the effects of 

injection temperature, injection speed, injection pressure, and 

cooling time. Therefore, it allows ANN to be able to provide 

predictions of whether a product is defective or not [17][18]. The 

ANN method applied to the injection molding process could 

provide optimal parameter recommendations and reduce product 

weight by 0.14% [19]. Also, the ANN method could give 

predictions close to the results. In solving the shrinkage problem, 

the ANN model can accurately predict 98.34% and suggest the 

optimal parameters of the injection molding process  [20]. 

The urgency of the research is to overcome errors in setting 

process parameters, resulting in product defects that have the 

potential to pollute the manufacturer's environment. This research 

carries the novelty of carrying out a continuous optimization using 

the RSM method and continued with ANN optimization, that to be 

able to provide optimal parameter results and accurate predictions. 

Product quality can be maintained and simultaneously and can 

reduce the number of product defect events. Through the 

promotion of industry awareness in the early production waste 

follow-up process, this optimization development also realizes the 

implementation of the Minister of Environment and Forestry 

Regulation No.75 of 2019 which was passed in 2019 [21]. 

2 Research Methods/Materials and Methods 

2.1 Optimization Model 

After the initial phase of determining which variables would be 

controlled and which would be independent, the procedure of 

injection plastic molding carried out. 

In order to create a flashing defect prediction model, the model 

that was developed through the optimization of the Response 

Surface Methodology (RSM) and the Artificial Neural Network 

(ANN) approach was implemented. After that, the model is 

examined for its responsiveness to actual and test data, as well as 

for the determination of the most appropriate parameter 

suggestions, as illustrated in Fig. 1. 

2.2 Material 

The plastic material used in this study was polypropylene 

material produced by Yungsox 1450D Taiwan, as shown in Fig. 2. 

The polypropylene material had specifications of melt index: 

45g/10min, mold shrinkage: 1.3-1.7%, and melting point: 170°C. 
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Fig. 1. Model optimization. 

 

 
Fig. 2. Polypropylene material. 

2.3 Injection Molding Machine 

The experimental process used a Victor Taichung injection 

molding machine (Vs-250 EES) shown in Fig. 3. The machine has 

the specifications of clamping force: 250 tons, screw diameter: 55 

mm, injection rate: 260 cm2/sec, screw speed:  203 rpm, and 

hydraulic system pressure: 170 Psi.In addition, in this experiment, 

the mold used is a multi-cavity type which will produce 2 products 

in each cycle. 

 

 
Fig. 3. Plastic injection molding machine Victor Taichung (Vs-

250 EES). 

 

The product that was produced because of this experiment is a 

Lid Yogurt Container, as shown in Fig. 4. 

 

 
Fig. 4. Design and product of Yogurt Container Lid. 

2.4 Injection Molding Process 

Fig. 5 shows the injection molding procedure that was used for 

this research. The first phase of the process is known as the 

plasticization phase, and it begins with the heating of the plastic 

material in the heating barrel. The material will advance with the 

press of the screw, which will, over the course of time, result in 

the plastic substance becoming melted. The clamping phase is the 

second step, and during this phase, an oil pressure system is used 

to operate the clamping mechanism. 

 

 
Fig. 5. Injection molding process. 

 

This system regulates how optimal the clamping is to prevent 

the plastic melt from overflowing. The third stage of production is 

known as the filling phase, and it is during this stage that the 

molten plastic is forced out of the nozzle and into the cavity. In the 

fourth phase, known as packing, the pressure inside the cavity is 

kept constant to compensate for the volume reduction. The molten 

plastic that is contained within the cavity will be forced to 

gradually become more solid by the cooling channel as part of the 

fifth stage, which is the cooling phase. The sixth step is called 

demolding, and it refers to the process that occurs when the mold 

is opened and the product is joined to the cavity. The final phase is 

called "ejecting", and during this step, the product is expelled from 

the cavity via the ejection mechanism. 

2.5 Process Parameters 

During the course of the trials, the process parameters 

presented in Table 1 were subjected to a range of different 

adjustments. 
 

Table  1. Independent variable 

Parameters Level 

Clamping force (ton) 30 50 70 

Holding time (second) 0.1 0.5 0.9 

Holding pressure (bar) 30 60 90 
 

Table 1 shows the selection of process parameters and their 

levels, based on the PP material data sheet, machine conditions, 

and previous studies. The experiments presented show differences 

from Lee J research[22]where the author focused on identifying 

the melting temperature, injection speed, cooling time, mold 

temperature, packing time, and packing pressure to predict the 

diameter of a product. This study emphasised a more industrial 

approach by adjusting clamping force, holding time, and holding 

pressure to minimise the occurrence of flashing defects. In 

addition, there were specific parameter settings for the control 

variables, which included an injection speed of 45%, an injection 

pressure of 45 bar, an injection temperature of 210°C, an injection 

time of 0.5 seconds, and a cooling time of 1 second. 

2.6 Evaluation of Successful and Defect Flashing Products 

In this study, the product defect that were discovered were 

flashing problems. Flashing is the condition of excessive plastic 

material due to process parameter conditions that passes through 

the edge of the cavity, resulting in products that do not match the 

design[23]. Fig. 6 is an example of a product with a flashing 

defect. 

The identification of flashing defect in products YogurtLid 

Containers is carried out directly in Table 2, where products that 

are found to have flashing defects are assigned the code 1, while 

products that are found to be free of such defects or products 

success are assigned the code 0. 
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Fig. 6. Flashing defect products[23]. 

 

Table 2. Product defect identification 

Product 
Quality 

Flashing Success 
J 

 
 

 0 

J 

 
 

1  

2.7 Response Surface Methodology Design  

For the purpose of this investigation, Response Surface 

Methodology (also known as RSM) was developed in order to 

optimize the process parameters. The Box-Behnken RSM 

optimization was utilized in this investigation. A total of 15 base 

runs were conducted as part of this study, and each run was 

replicated ten times. The configuration of the analyzed parameters 

is presented in Table 3. 

 

Table 3. RSM Box-Behnken parameter design 

Level 
Clamping force  

(ton) 

Holding time  

(s) 

Holding pressure 

(bar) 

-1 30 50 70 

0 0.1 0.5 0.9 

+1 30 60 90 

 

The mathematical model of product quality prediction formed 

from RSM is generally as shown in Eq. 1. 

 

y = β0+ β1x1 + β2x2…+ βkxk + e  (1) 

 

The estimation of the product quality is identified by the 

variable "y," while the factors that have an impact on "y" are 

indicated by the set of parameters represented by "x" in Eq. 1[24]. 

2.8 Artificial Neural Network Design 

Abbreviation ANN stands for artificial neural network and 

refers to a modeling tool known as an artificial neural network. 

This modeling tool depends on iteration or learning methods by 

modifying the model concept to match human brain networks. In 

Fig 7, this investigation made use of three different types of 

inputs: clamping force, holding time, and holding pressure. Input 

layers, hidden layers, and output layers make up the framework of 

the ANN model's structure. Elements that are typically referred to 

as nodes or neurons can be found in each layer. Additionally, each 

node has a weight, which is used to assess how strongly the nodes 

are connected to one another.In this model, learning is applied 

1000 times. 

 
Fig. 7. ANN model. 

2.9 Test Data/Verification 

The prediction results from RSM and ANN will be tested with 

the designed experimental results as shown in Table 4. 

 

Table  4. Test data 

Parameter 
  Probability of defect 

CF (ton) HT (s) HP (bar) 

30 0.1 30 0 

30 0.1 60 0 

30 0.1 90 0 

30 0.5 30 0 

30 0.5 60 1 

30 0.5 90 1 

30 0.9 30 0 

30 0.9 60 1 

30 0.9 90 1 

50 0.1 30 0 

50 0.1 60 0 

50 0.1 90 0 

50 0.5 30 0 

50 0.5 60 1 

50 0.5 90 1 

50 0.9 30 0 

50 0.9 60 1 

50 0.9 90 1 

70 0.1 30 0 

70 0.1 60 0 

70 0.1 90 0 

70 0.5 30 0 

70 0.5 60 0 

70 0.5 90 0 

70 0.9 30 0 

70 0.9 60 0 

70 0.9 90 0 

 

The results of the tests and verifications performed on the 

designed product are presented in Table 4, which may be found 

here. The data from each cycle is used to make a comparison of 

the number of flashing defects with the number of replications for 

each manufacturing cycle 10 times. Meanwhile, Fig. 8 depicts the 

RSM and ANN prediction result testing scheme. 

 

 
Fig. 8. Data testing scheme. 
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The Root Mean Squared Error (RMSE) and the coefficient of 

determination (R2) are used in the process of testing models. 

These metrics demonstrate how sensitive the RSM and ANN 

models are to the test/verification data contained in Eq. 2 and Eq. 

3 [25]. 
 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑝𝑟𝑒𝑑−𝑦𝑟𝑒𝑓)

2

𝑁
  (2) 

 

𝑅2 = 1 −
∑(𝑦𝑟𝑒𝑓−𝑦𝑝𝑟𝑒𝑑)

2

∑(𝑦𝑟𝑒𝑓−𝑦𝑟𝑒𝑓̅̅ ̅̅ ̅̅ ̅)
2    (3) 

 

In the equation sequentially ypred, yref, 𝑦𝑟𝑒𝑓̅̅ ̅̅ ̅, and N represents 

the model prediction results, verification/test data results, average 

verification data results, and number of cycles, respectively. 

3 Results and Discussion 

3.1 RSM Optimizations 

Table 5 shows the several elements that can increase or 

decrease the likelihood of flashing errors occurring. It has been 

determined that the parameters of clamping force, holding time, 

and holding pressure have a significant influence on the faults of 

flashing products (p-value less than 0.05). 

 

Table  5. Anova 

Source DF P-Value 

Clamping force 1 0.000 

Holding time 1 0.000 

Holding press 1 0.000 

 

Using a quadratic graph, Fig. 9 presents the findings that 

resulted from determining the effect that clamping force 

parameters have on the possibility of flashing errors. The 

clamping force position at 50 tons has the highest defect 

probability, with a flashing defect probability of 0.95. 

 

 
Fig. 9. Graph of the effect of clamping force on flashing defects. 

 

The clamping force position at 70 tons has the lowest defect 

probability, with a flashing defect probability of 0.32. This 

condition is supported by research from Huan [26] which 

explained that setting the clamping force low causes the 

appearance of flasing defects and an increase in the weight of the 

product, therefore when the clamping force is low it is not able to 

withstand the overflow of material entering the cavity, resulting in 

the overflow of material resulting in flashing defects. Therefore, 

the phenomenon of flasing defects occurs when the clamping 

force setting is 30 and 50 tons. 

Fig. 10 shows the impact that adjusting the holding duration 

has on the number of flashing flaws. When the holding time 

position is set to 0.1 second, the value 0.31 indicates the flashing 

defect probability is at its lowest possible level. When the holding 

time parameter is set to 0.5 seconds, the flashing defect probability 

is displayed to be at its highest possible level of 0.92. The effect of 

increasing the holding time at 0.5 and 0.9 seconds will cause an 

increase in flashing defects, this condition is due to the increase in 

holding time duration which provides additional time for the 

material to push into the cavity so that if there is a gap in the mold, 

flashing defects will appear[11][2]. 

 

 
Fig. 10. Graph of the effect of holding time on flashing defects. 

 

In Fig. 11, the holding pressure setting also influences 

likelihood of flashing errors occurring. When the holding pressure 

is set to 30 bar, the probability of flashing defects is at its lowest, 

with a value of 0.34. On the other hand, the probability of flashing 

defects is at its highest, with a value of 0.91, when the holding 

pressure is set to 60 bar. According to the results of research by 

Trotta et al [27] The cause of the increase in the chance of flashing 

defects at 60 and 90 bar holding time settings is inseparable from 

the viscosity of polypropylene material, in this study the 210°C 

temperature setting has indicated that the viscosity of 

polypropylene is low so that it will facilitate the flow of material 

filling the cavity[28]. Therefore, when choosing the holding 

pressure parameter, it provides an opportunity for the molten 

polypropylene material to slightly push and fill the empty gaps of 

the cavity and its surroundings, therefore the interaction of the 

process parameters used in this study is interrelated and related to 

produce a product without defects.  

 

 
Fig. 11. Graph of the effect of holding pressure on flashing 

defects. 

 
The answer to the problem of flashing defects can be shown in 

Fig. 12. The interaction settings of clamping force 70 tons, 

holding time 0.10 seconds, and holding pressure 90 bar show the 

minimal chance effect with a value of -0.5875. This value 

indicates that there is less of a chance for the flashing defects to 

occur. 
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Fig. 12. Optimal parameters of flashing defect minimization. 

 

The mathematical model to predict the chance of flashing 

defects resulting from RSM-Box Behnken optimization is shown 

in Eq. 4. 

 

Flashing 

Defect 

Probability 

= -4.5180 + 0.111562 Clamping Force 

+ 2.8594 Holding Time 

+ 0.060417 Holding Press –

 0.000844 Clamping Force*Clamping Force 

- 2.1094 Holding Time*Holding Time 

- 0.000347 Holding Press*Holding Press 

- 0.028125 Clamping Force*Holding Time 

- 0.000417 Clamping Force*Holding Press 

+ 0.020833 Holding Time*Holding Press   

(4) 

3.2 Results of Artificial Neural Network Model 

In this investigation, an ANN model was developed to predict 

the outcomes of injection molding using a set of parameters that 

were previously calculated, as shown in Table 1. With the goal of 

the model being able to prediction with the same level of accuracy 

as earlier studies, the number of iterations or learning utilized was 

set at 10,000 times[20]. The prediction results of ANN on the 

probability of flashing defects are shown in Fig. 13. 

 

 
Fig. 13. ANN prediction results for flashing defects. 

 

The findings of the ANN model's predictions indicate that 

cycles 19–27 with a parameter setting of 70 tons and the 

interaction of various degrees of holding duration and holding 

pressure resulted in the lowest flashing defect prediction with a 

defect risk of 0. Within cycles 1 through 9, the ANN model 

predictions that there is a one in one risk of a flashing defect 

occurring in cycles 5, 6, 8, and 9. This is due to the fact that the 

potential for flashing flaws is increased when a clamping force of 

30 tons is used in conjunction with the interaction of holding 

duration (0.5 and 0.9 seconds) and holding pressure (60 and 90 

bar). This is supported by Fig. 10 and 11, which show that the 

possibility for flashing errors increases in proportion to the degree 

to which the parameter values for holding time and holding 

pressure are increased. Therefore, fixing the clamping force at the 

level of 30 tons does not always reduce the risk of flashing defects 

to an acceptable level. The trend observed when setting the 

clamping force level to 30 tons is also observed when setting the 

clamping force level to 60 tons in cycles 10–18. 

3.3 Sensitivity Test of RSM and ANN Models 

The comparison of the results of the RSM prediction with the 

test data is shown in Fig. 14. Based on the graph, it appears that 

the predictions using RSM have a tendency to miss the test data 

for several flashing fault predictions. 

 

 
Fig. 14. Prediction of RSM model and test data on flashing defect 

probability. 

 
It can be observed from Fig. 15 that ANN predictions 

correspond with the test data, which enables the ANN model to 

accurately prediction the likelihood of flashing defects. The 

substantial results that were shown by the ANN model's prediction 

when it was used in conjunction with the test data shown in Fig. 

15. 

 
Fig. 15. ANN prediction vs test data against flashing chance 

defect. 

 
The results of the testing of the models are provided in Table 

6, where it shown that the ANN model has the greatest R2 value 

with 100%. A high coefficient of determination indicates that the 

effect that the ANN model has displayed in estimating the 

possibility of flashing flaws is quite important. The RMSE value 

of the model is 7.9689E-09, which indicates that the accuracy of 

the ANN model is high. The model's error rate in estimation the 

likelihood of flashing defects is minimal, which suggests that the 

model is relatively accurate. The RSM model has a value of R2 

that is 71.64% and an RMSE value that is equal to 0.24315. The 

reason for this is because the test graph that is displayed in Fig. 

15, which demonstrates multiple errors in prediction the likelihood 

of product defects. 

 
Table  6. Model sensitivity test 

Prediction model RMSE R2 

RSM 0.24315 0.7164413 

ANN 7.9689E-09 1 
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Since the model only examines 15 cycles out of a total of 27, it 

is impossible for RSM not to make a mistake in its prediction. 

These findings are consistent with the findings of Lee's research 

[17] when it comes to prediction, ANN models perform 

significantly better than regression and polynomial models. This is 

because of the data learning process that the ANN model uses. In 

addition, research conducted by Jeon[25]demonstrates that the 

data learning process on intricate and varied ANN models will 

train the model to make decisions. The results obtained from the 

use of ideal parameters determined from Response Surface 

Methodology (RSM) and Artificial Neural Network (ANN) 

predictions remain consistent when utilizing a clamping force of 

70 tons, a holding period of 0.10 seconds, and a holding pressure 

of 90 bar. The relationship between these characteristics and the 

quantity of initial production waste is illustrated in Fig. 16, which 

indicates that the lowest levels of initial production waste from 

defective goods occur during cycles 19-27. This conclusion was 

derived from the establishment of these factors. Based on the 

results of this investigation, the manipulation of parameters has 

been observed to have a mitigating impact on the generation of 

plastic waste at its initial point of production. The assertion made 

in this statement is supported by the research conducted by Tranter 

[29], who found that the implementation of optimization measures 

plays a crucial role in maintaining the quality of products. This is 

done to minimize the probability of potential process failures and 

energy wastage. 

 

 
 

Fig. 16. Total production waste from each cycle. 

4 Conclusion 

Based on the results obtained from RSM and ANN 

optimisation modelling in predicting flashing defects and 

providing optimal parameter recommendations, it was concluded 

that the optimal parameters were by setting the clamping force at 

70 tones, holding period at 0.1 seconds, and holding pressure at 90 

bar. In addition, the use of ideal and optimal parameters has the 

potential to reduce the formation of waste around plastic mold 

manufacturers, this was evident when cycles 21-27 produced 

products without defects and minimal product waste. From this 

study, the ANN model showed superior prediction accuracy, 

achieving an R2 value of 99% and a prediction error rate of 

0.00445.  In contrast, the Response Surface Methodology (RSM) 

model showed a lower accuracy of 71% and a prediction error rate 

of 0.24315. This shows that the ANN model will help the 

prediction results of the RSM model, so that in making a 

prediction it will be more accurate by combining the two models 

simultaneously/continuous optimisation such as the RSM and 

ANN methods. 
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