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Abstract 

This paper discusses the process of optimizing the truss structure 

step by step from 2D to 3D space using finite element analysis. 

This step-by-step optimization process is carried out to simplify the 

analysis of truss structures from simple to more complex cases. 

Optimization aims to obtain the minimum cross-sectional area and 

weight for each truss member. The stages of the optimization 

process carried out in this study are starting from a 2-dimensional 

(2D) truss structure with several two and five members to a 3-

dimensional (3D) one-level tower with a total of 18 members. The 

optimum criterion as the constraint used is the full stress design 

method and the value of the cross-sectional area and weight of the 

structure as a result of optimization, leading to convergence during 

the iteration process. The tool used to run the iteration process is 

performed using Fortran software. The results of this optimization 

process are the total cross-sectional area (A) and a minimum of 

weight (W), that is, for a two-member truss A = 1 in2 and W = 4 lb, 

for a five-member truss A = 3.48 in2 and W = 14 lb. Furthermore, 

for a one-level of tower-space truss with a total of 18 elements, A 

= 57.91 in2 is obtained and the optimum weight of the truss 

structure is W = 134.02 lb. From these results, it can be seen that 

the optimization process that starts from simple to complex cases 

can be carried out easily and still takes into account the existing 

constraints.  

 

Keywords: 2D-truss, 3D-space truss. Optimization, finite element 

analysis, minimum weight 

1  Introduction 

The analysis of complex truss structures using traditional 

methods will be complicated and time-consuming. So, recently 

various optimization methods have been developed using finite 

element analysis. Application of the optimization process can be 

used in decision-making, design, construction, and maintenance of 

various engineering systems. In this case, the optimization method 

is used as a tool to optimize the objectives in the process of making 

a decision. 

The main contribution of the optimization methods are often 

applied to solve engineering problems which can be briefly 

described as follows: design of aircraft to obtain minimum 

structural weight; obtaining the optimal trajectory of the 

spacecraft; water resource system design to maximize benefits; 

minimizing the weight of the structure against the wind, 

earthquake, and random loading; various design of civil 

engineering structures such as frames, foundations, steel space 

truss towers [1], bridges [2], chimneys, and dams, to obtain 

minimum cost criteria; optimal plastic structure design; optimal 

design of joints, gears, cams, machine tools, and other mechanical 

components; factory or industrial layout; control system 

optimization [3], [4], [5]. 

The basic types of trusses shown in this article have simple 

designs that could be easily analyzed by 19
th 

and early 20
th 

 century 

engineers.  A truss is relatively economical to construct because 

it uses materials efficiently. A truss is a simple structure whose 

members are subject to single internal force and uniform 

deformation [6], axial tension and compression only but not 

bending moment, shear or torsion [7]. 

There are two types of trusses, namely plane truss and space 

truss [8]. When all members and applied forces are oriented in the 

same plane, the structure is the plane truss or 2D truss [9]. While 

in a space truss, the members and the forces are oriented in three 

dimensions. 

The object of this research is the truss and analysis are carried 

out in stages and modeled in 2D to 3D planes. Here, the primary 

purpose was to minimize the cross-sectional area and weight of the 

structure with the optimization process but must consider certain 

conditions, namely being able to withstand loads such as the 

weight of the fluid tank, parabola, wind effect or drag, and the 

weight of the structure itself. So, to get the relatively minimum 

cross-sectional area and weight of the truss, optimization is needed 

without violating the specified constraints. 

There are two conditions for the truss optimization process 

carried out in this study. First, starting from a simple 2D truss that 

has a total of two and five bars. The next stage is followed by a 

more complex truss in the form of 3D space with a total of eighteen 

bars. With so many members, it requires analysis with finite 

element analysis. Finite element analysis is a way of solving the 

continuum problem, where the domain is discretized into several 

small elements. These small elements are called finite elements 

which are connected at the nodes or joints, forming a series, which 

together and as a whole approaches the original continuum shape 

[10]. 

2  Research Methods 

The optimization method in this study applies numerical 

analysis with a computer-assisted program using the Fortran 

language. The basis in optimization is using the finite element 

analysis. The first optimization is carried out on a 2D truss with 

fixed support which has a total of two and five members. The 

optimization of the next step was carried out on a 3D space truss 

in the form of a one-level tower with four fixed supports and 

eighteen members. 

2.1  Two-bar truss 2D model 

This structure is modeled by three nodes and two bar elements. 

Fixed support as boundary conditions is given at nodes 1 and 2 

with a horizontal force F acting on node 3, as shown in Fig. 1. 

 

Fig. 1. Fixed support truss model with two members. 

2.2 Five-bar truss 2D model 

This 2D truss structure model has four nodes and five bars as 

shown in Fig. 2. This structure was fixed support at nodes 1 and 2, 

with a horizontal force F acting on node 4. 
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Fig. 2. Fixed support truss model with five members. 

2.3 The 3D space truss model with eighteen members 

The 3D space truss structural model has eight nodes and 

eighteen members. This structure is fixed-support at nodes 1, 2, 3, 

and 4 and external load F1 and F2 that work on nodes 5 and 6. The 

whole dimension of the truss is shown in Fig. 3.  

 
Fig. 3. The 3D space truss model, the form of a level tower with 

eighteen members. 

2.4 Design variables of the truss member 

The profile of each truss member as a design variable is L-

shape section written as a, b, and t or can be expressed as x1, x2, 

and x3. Problem design can be defined as a vector that will be 

optimized in the form of Fig. 4. 

 
Fig. 4. Truss element profile as a design variable 

2.5 Finite Element Analysis 

 According to [11], the equation for the relationship between 

forces, truss member stiffness, and nodal displacements is written 

as Eq.1. 

{f} = [k] {d} (1) 

By applying the superposition method, the truss element stiffness 

equation is developed into a global stiffness equation that can be 

written as Eq.2 

{F} = [K] {D} (2) 

Where: {f} = element force matrix 

   [k] = element stiffness matrix 

  {d} = nodes displacement matrix 

 {F} = structure force matrix 

  [K] = structure stiffness matrix 

 {D} = structure displacement matrix 

 

The 2D truss element stiffness matrix [k] is written as Eq.3: 

{𝑘} =
𝐴𝐸

𝐿
[

𝐶2 𝐶𝑆 −𝐶2 −𝐶𝑆
𝐶𝑆 𝑆2 −𝐶𝑆 −𝑆2

−𝐶2 −𝐶𝑆 𝐶2 𝐶𝑆
−𝐶𝑆 −𝑆2 𝐶𝑆 𝑆2

] (3) 

Therefore, the relationship between the forces, stiffness 

matrix, and the deformation of two-node elements concerning the 

x and y coordinates can be written as Eq.4: 

{
 

 
𝑓1𝑥
𝑓1𝑦
𝑓2𝑥
𝑓2𝑦}
 

 

=
𝐴𝐸

𝐿
[

𝐶2 𝐶𝑆 −𝐶2 −𝐶𝑆
𝐶𝑆 𝑆2 −𝐶𝑆 −𝑆2

−𝐶2 −𝐶𝑆 𝐶2 𝐶𝑆
−𝐶𝑆 −𝑆2 𝐶𝑆 𝑆2

]

{
 

 
𝑑1𝑥
𝑑1𝑦
𝑑2𝑥
𝑑2𝑦}

 

 

 (4) 

Where A, E, and L are known respectively as the area, and modulus 

of elasticity. While C and S are abbreviations for cos θ and sin θ. 

Meanwhile, the stiffness matrix for 3D truss elements is expressed 

as Eq.5: 

[𝑘] =
𝐴𝐸

𝐿

[
 
 
 
 
 
 
𝐶𝑥
2 𝐶𝑥𝐶𝑦 𝐶𝑥𝐶𝑧 −𝐶𝑥

2 −𝐶𝑥𝐶𝑦 −𝐶𝑥𝐶𝑧
𝐶𝑦
2 𝐶𝑦𝐶𝑧 −𝐶𝑥𝐶𝑦 −𝐶𝑦

2 −𝐶𝑦𝐶𝑧
𝐶𝑧
2 −𝐶𝑥𝐶𝑧 −𝐶𝑦𝐶𝑧 −𝐶𝑧

2

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝐶𝑥
2 𝐶𝑦𝐶𝑦 𝐶𝑥𝐶𝑧

𝐶𝑦
2 𝐶𝑦𝐶𝑧

𝐶𝑧
2 ]
 
 
 
 
 
 

 (5) 

Where Cx, Cy and Cz are written as abbreviations for cos θ in the 

x, y, and z coordinates, respectively. 

2.6 Structural Optimization process 

The objective function in optimizing the truss structure 

problem in this study is to minimize the weight of the structure can 

be formulated by Eq. 6. 

Object to:
i

n

i

i xlxf 
=

=
1

)(   (6) 

Constrain to:   σi   cr    (compression) (5) 

σi   y     (tension) 

Where ρ is the density of the material, li is the length of each 

element, xi is the cross-section of each truss element, σcr is the 

critical compressive stress, and the yield strength (σy). The value 

of the objective function confirmed that optimized trusses in 

equation (6) are within the limits of the design constraints of 

equation (7). 

2.7 Fully Stress Design Method 

The full stress design method is used by multiplying the design 

variables by the stress ratio obtained against the constraint limits 

that have been determined on the material properties [12]. This 

concept first analyzes the structure by calculating the stress on 

each member of the bar under certain loading conditions. The 

stress for each bar (σi) obtained is then compared with the critical 

stress (σcr) of the material. The comparison is expected to be as 

close as possible, namely (Eq.8): 

𝜎𝑖  ≤ 𝜎𝑐𝑟 (8) 

where:  𝜎𝑖𝑐𝑟 =
𝜋2𝐸𝑖𝐼𝑖

𝐿𝑖
2

1

𝐴𝑖
 

}{ iiiii tatbA +=  

and the minimum inertia is oriented in the z direction, then (Eq. 9) 

𝐼𝑦 =
𝑥1𝑥2

3

12
+ 𝐴1[𝑑𝑦

+]2 +
𝑥2
12
(𝑥3

3) + 𝐴2[𝑑𝑦
−]2 
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𝐼𝑥𝑦 = 𝐴1(−(𝑑𝑦
−))(𝑑𝑦+) + 𝐴2(𝑑𝑥

+)(−(𝑑𝑥−)) 

𝐼𝑧 = 𝐼𝑦 + 𝐼𝑥𝑦   (9) 

If the comparison conditions in equation (8) are unsatisfied, the 

design variable needs to be iterated so that an optimum value is 

obtained. 

2.8 Convergent function 

To find out the optimum value, the criteria towards convergent 

values are used. The optimum criteria are stated as follows 

(Eq.10): 

|
𝑓(𝑥)𝑖+1−𝑓(𝑥)

𝑓(𝑥)𝑖+1
| ≤ 𝜀, (10) 

where: 

 f(x)i = objective function at iteration i.   

 f(x)i+1 = objective function at iteration i+1 

 =  error limit (  = 0.0001) 

 i =  iteration number (i = 1, 2, 3,..., n) 

If the conditions in this equation are reached or converge, the 

iteration process stops and the optimum objective value is 

obtained. 

2.9 Finite Element Analysis computational steps 

The finite element analysis used to support the optimization 

process is carried out through the following algorithms: 

a) Entering (input) data. 

b) Input data as shown in Table 1, includes structural geometry 

data, number and number of nodes, number of truss elements, 

loading conditions, degrees of freedom, material type, 

coordinates of each node, connection between structural 

members to nodes, boundary conditions, modulus of elasticity 

of elements, the yield stress of the material used, and the cross-

sectional area. 

c) Calculating the element stiffness matrix [k]. 

d) Develop the elemental stiffness matrices into a global 

stiffness matrix [K]. 

e) Modification of the global stiffness matrix due to supports 

and external forces. 

f) Calculation of the displacement of each node. 

g) Calculation of the deformation of each bar 

h) Calculation of the force F and the stress σ in each member. 

 

The stress results obtained on each bar (σi) are then compared 

with the critical stress (σcr) of the material. 

The general flowchart for the proposed algorithms is given in 

Fig. 5. 

 
Fig. 5. The flowchart for the optimization algorithms 

For example, the input model for design parameter data of the truss 

assuming material properties is shown in Table 1 and the input data 

file in Fortran is shown in Table 2. 

 

Table 1. Input data for 2D and 3D space truss 

Data design 

parameters  

2D Truss 3D Truss 

- Number of nodes 3 dan 4 8 

- Number of 

elements 

2 dan 5 18 

- Modulus of 

elasticity 
100 x106 psi 100 x106 psi 

- External load  10000 lb 10000 lb 

- Yield strength 10000 psi 10000 psi 

- Initial value of 

cross-sectional 

area 

5 and 10 in2 5 in2 

- Boundary 

conditions  

fixed 

node 1, 2 

fixed 

node 1,2,3,4 

- Load location node 3 and 4 node 5 and 6 

- Dimension of 

elements 

coordinated coordinate 

Table 2. Example of data file input in Fortran for a two-bar truss 

Geometries parameters 

NP, NE,  NLD, NDF, NMAT 

3,     2,      1,       2,        2  

 

Modulus of elasticity 

NE          E 

1, 10000000 

2, 10000000 

Coordinate of bar  

NP X Y 

1, 0, 30 

2, 0, 0 

3, 40, 30 

Yield strength 

NE          SY 

1, 10000 

2, 10000 

Element connections 

NE NOP1 NOP2  IMAT 

1, 1,            3,      1 

2, 2,            3,      2 

Setpoint of initial area 

NE       A   

1, 5 

2, 10 

Number of boundary cond 2 

NP  NFIX   U   V 

1     11        0    0 

2     11        0    0 

Load 

NP           F 

3, 10000 

 

where (NP) is the number of nodes, (NE) is the number of 

elements,  (NLD) is the number of node loads, (NDF, NB) is the 

number of degrees of freedom, (NFIX, U,  V) is the type of 

support, (NMAT) is the number of material, (IMAT) is the type of 

material, (E) is modulus of elasticity, (NOP1, NOP2) is connection 

of node between one element and another, (A) is setpoint as initial 

cross-sectional area, and (Sy) is yield strength of materials. 

3  Results and Discussion. 

The results of the optimization methodologies detailed 

gradually from simple 2D truss problems to more complex cases 

for 3D truss in the previous section are presented in the following 

section. 

3.1 The 2D truss optimization results with two-member 

elements. 

Optimization results for 2D truss with two-bar elements based 

on finite element analysis obtained optimum cross-sectional area 

and weight values as shown in Fig. 6 and 7. This value is obtained 

by using the convergent function of equation 10. 
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Fig. 6. Iteration wise reduction of the cross-sectional area for 2D 

trusses with two members 

 
Fig. 7. Iteration wise reduction of weight for 2D trusses with two 

members 

 

Fig. 6 and 7 show the cross-sectional and weight reduction 

during iteration using the optimization technique. Given the 

external load, F = 10000 lb and the yield strength (σy) = 10000 psi, 

the modulus of elasticity, E = 10 x 106 psi, the optimum total of 

the cross-sectional area in this case, is 1.00 in2, and the total weight 

of the structure is 4.00 lb. 

3.2 The 2D truss optimization results with five-member 

elements. 

The optimum cross-sectional area and weight obtained using 

the optimization for a 2D truss with five elements are shown in Fig 

8 and 9. 

At this step, the input data is known by providing an external load, 

F = 10000 lb and yield strength (σy) = 10000 psi, modulus of 

elasticity, E = 10 x 106 psi. 

 
Fig. 8. Iteration wise reduction of the cross-sectional area for 2D 

trusses with five members 

 
Fig. 9. Iteration wise reduction of weight for 2D trusses with five 

members 

Fig 8 and 9 show the cross-sectional and weight reduction 

during iteration using the optimization technique. The optimum 

total of the cross-sectional area in this case, is 3.48 in2, and the 

total weight of the five-member structure is 14.60 lb. 

3.3 The 3D space truss optimization results with eighteen-

member elements. 

The optimum results of the cross-sectional area and weight 

obtained from the optimization for a 3D space truss with eighteen 

bar elements are shown in Fig. 10 and 11. In Fig. 10, only five bars 

are shown. 

 

Fig. 10. Iteration wise reduction of the cross-sectional area for 3D 

trusses with eighteen members 

 

Fig. 11. Iteration wise reduction of weight for 3D space trusses 

with eighteen members 

 

The results of this step, the input is known by providing two 

external load locations namely, at nodal 5, F1 = 10000 lb and at 

nodal 6, F2 = 10000 lb with yield strength (σy) = 10000 psi, and 

modulus of elasticity, E = 10 x 106 psi. The optimum total cross-

sectional area in the 3D case with eighteen members is 57.91 in2, 

and the total weight of the structure is 134.02 lb. The output units 

depend on the input units. From the results (Fig. 10) it is shown 

that many cross-sectional areas with very small values are even 

zeroed out because they are deemed unnecessary. However, in 

practice in the field, cross-sectional areas with a zero value should 

not exist, but these bars must be available to strengthen the 

structure with consideration of the varying or random force 

directions. 

3.4 Validation 

Evaluation against valid results in this study can be done by 

simulation the various input initial values with higher and lower 

numbers. In this regard, for a truss with two members (Fig. 1), the 

initial value of cross-sectional area is given 5 in2 and 10 in2 as the 

higher initial values. While the lower initial value given is 0.4 in2 

and 0.8 in2 respectively. As can be seen, after programming was 

running and towards convergence on the 19th iteration, the results 

obtained the optimum values.  
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Fig. 12. Validation of optimum cross-sectional area during 

iteration 

 
Fig. 13. Validation of optimum weight during iteration 

 

Fig. 12 and Fig. 13 show the optimum total cross-sectional area 

in this case is 1.00 in2, and the weight of the structure is 4.00 lb. 

These results are consistent with results in section 3.1, focus on 

Fig. 6 and Fig. 7. 

4 Conclusions. 

The optimization process to obtain the minimum weight of the 

truss structure can be carried out in stages based on finite element 

analysis. Optimization techniques have been successfully carried 

out with the full stress design constraints used by multiplying the 

design variables with the stress ratio obtained. 

The optimum total yield area in the 2D case and the two bars 

is 1.00 in2, and the weight of the structure is 4.00 lb. The optimum 

total area in the 2D case with five members is 3.48 in2, and the 

weight of the structure is 14.6 lb. While the optimum total area in 

the 3D case with eighteen bars is 57.91 in2, and the weight of the 

structure is 134.02 lb. All output units resulting from the 

optimization process depend on input units.  

In this study, it was shown that many cross-sectional areas with 

very small values were even zeroed out because they were deemed 

unnecessary. But in practice in the field, there should not be a 

possible cross-sectional area with a zero value, but there must be a 

bar to strengthen the structure and consideration of varying or 

random force directions. 
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