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Abstract 

The utilization of machine learning methods in modern material 
science enables the design of more efficient and innovative 

materials. This research aims to develop a machine learning 

model using the Artificial Neural Network (ANN) algorithm to 

predict the mechanical properties of low-alloy steel. The dataset 

used consists of 15 input variables and 2 output variables, namely 

Yield Strength (YS) and Tensile Strength (TS). In this study, 

three ANN architectures were designed and their performance 

was compared using evaluation metrics such as Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), and R-squared. 

During the search for the best parameters for the ANN model, 

variations were made in the optimizer, learning rate, and batch 
size. The evaluation was conducted using a cross-validation 

technique with k=10. The evaluation results indicate that the 

model with the best performance in predicting YS had an MAE of 

18.197, an RMSE of 23.552, and an R-squared of 0.969. For 

predicting TS, the model achieved an MAE of 27, RMSE of 

36.696, and R-squared of 0.907. The research results demonstrate 

that the ANN model can be used to predict the mechanical 

properties of low-alloy steel based on alloy chemical composition 

and heat treatment temperature with reasonably high accuracy. 
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1 Introduction 
Low-alloy steels are widely used in the manufacturing industry 

of machine structures, vehicles, and building constructions that 

require high strength and durability [1][2]. This is because the 

mechanical properties of low alloy steels are superior compared to 

ordinary steel, such as strength, hardness, toughness, wear 

resistance, and better corrosion resistance[3].The increasing and 

widespread use of low-alloy steels in the industrial world has 

prompted the steel industry to develop steel alloys that are suitable 

for specific applications. This aims to prevent material failure, as 

the mechanical properties of a material play an important role in 
determining the right material for modern industrial 

components[4]. The mechanical properties of low-alloy steels are 

influenced by several factors, such as chemical composition, 

microstructure, and heat treatment. These factors can effectively 

control the microstructure, grain size, and defects, which are all 

closely related to the material's tensile properties[5][6]. A good 
understanding of the factors that affect the mechanical properties 

of low-alloy steels can assist in developing materials that are 

suitable for specific needs [7]. Therefore, comprehensive testing 

and experimental laboratory work are necessary to understand the 

mechanical properties of low alloy steels, which require a long 

time, high costs, and adequate human resources. 

Materials informatics is a new approach in material science 

that integrates information technology and material science to 

optimize the process of discovering new materials more efficiently 

and innovatively [8][9]. In materials informatics, experimental and 

simulation data are integrated with data-based methods such as big 
data and machine learning to generate deeper knowledge about 

material properties. This approach is considered a new paradigm 

in material science that combines the first three paradigms of 

experiment, theory, and simulation [10][11][12].Artificial Neural 

Networks (ANN) are one of the machine learning algorithms that 

are inspired by the human nervous system and can be used to 

predict the mechanical properties of materials such as low-alloy 

steels. ANN consists of interconnected layers of artificial 

neuronsand can learn by adjusting the weights within it through 

learning from the given data [13]. ANN is capable of discovering 

hidden patterns in data and can consider interactions between 

various factors that affect the mechanical properties of materials, 
such as chemical composition, microstructure, and heat treatment, 

which are very complex to calculate manually. This allows ANN 

to be used to predict the mechanical properties of low-alloy steels 

that have not been experimentally tested[14]. Based on previous 

research [13], discussed the computer-based optimization of steel 

chemical composition design using Taguchi Particle Swarm 

Optimization (TPSO) with ANN. The research results indicate that 

the TPSO method with ANN can predict the chemical 

composition of steel rods, closely approximating actual data. In 

another study [15], ANN with default parameters can predict the 

mechanical properties of steel quite well based on chemical 
composition. ANN is also highly effective in predicting the 

mechanical properties of materials even when the testing data is 

not part of the model training data [14][16]. Furthermore, an 

Artificial Neural Network (ANN) model has been developed to 

predict various anisotropic mechanical properties and hardening 

behavior of Inconel 718 alloy. The ANN model is trained using 

the Levenberg-Marquardt algorithm and demonstrates good 

accuracy with a very high correlation coefficient and significantly 

low average absolute error. Validation of the developed ANN 

model's accuracy is confirmed through f-test and paired mean t-

test results [17]. 

Based on the advantages of ANN in predicting the mechanical 
properties of materials, this study aims to design a machine-

learning model with ANN to predict the mechanical properties of 

low alloy steels based on chemical composition and heat 

treatment. In this study, the model is trained using low alloy steel 

chemical composition and heat treatment data as input, while the 

output of the model is Yield Strength (YS) and Tensile Strength 

(TS).Expected outcomes of this research include obtaining the 

optimal parameter settings for the ANN algorithm in predicting 

the mechanical properties of low-alloy steel based on input 

variables such as chemical composition and heat treatment 

temperature. 

2 Research Method 

This study is an experimental research using a quantitative 

approach. Experimental research is a type of research conducted 

by controlling research variables and varying one or more 

independent variables to observe their effect on the dependent 

variable [18]. The ANN model is created using the Python 

programming language using the TensorFlow library, then the best 
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parameters are searched using tuning parameters such as model 

architecture, optimizer, learning rate, and batch size. The model 
validation used is cross-validation and evaluated using Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE), and R-

squared.This study consists of several stages as shown in Fig. 1. 

 

 
Fig. 1. Research stages. 

2.1 Dataset 

The dataset used in this study is the result of tensile tests on 

low-alloy steel, which includes chemical composition percentage, 
heat treatment temperature, and mechanical properties such as 

Yield Strength (YS) and Tensile Strength (TS). This data was 

obtained from Kaggle.com and consists of 915 data with 15 input 

variables and 2 output variables. 

2.2 Exploratory Data Analysis (EDA) 

This stage is very important because poor data understanding 

can affect the quality of prediction results. Therefore, the 

correlation between the data is analyzed using a correlation 

heatmapto understand the data [2]. Preprocessing of the data is 

also performed in this stage, such as: (a) data cleaning, which 

involves removing or correcting damaged, missing, or incomplete 

data;(b) data integration, which aims to replace missing data with 
data from other sources with the same characteristics; (c) data 

transformation, which is done to change the data format to suit the 

analysis needs, such as changing the data scale or normalizing the 

data. 

Data normalization is one of the techniques in data 

preprocessing that aims to change the data scale to the same range 

or equivalent range between 0 to 1. In this study, data 

normalization is performed using the MinMaxScaler method. 

MinMaxScaler is the most commonly used normalization method 

in machine learning, which can be calculated using Eq. 1. 

 

𝑋𝑠𝑐 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
   (1) 

 

Where 𝑋 is the original data, while 𝑋𝑠𝑐  is the normalized data. 
The purpose of this normalization is to eliminate bias that may 

exist in the data resulting from different scales in each variable 

[19][20]. 

2.3 Artificial Neural Network (ANN) Modeling 

The architecture of the Artificial Neural Network (ANN) for 

predicting the mechanical properties of low alloy steel in this 

study consists of three main interconnected layers. The first layer 

used is the input layer, which receives input data in the form of 

informationabout chemical composition and heat treatment 

temperature. This layer consists of several neurons that correspond 

to the number of input variables. In the second layer, several 
hidden layers aim to extract information from the input before 

being forwarded to the output layer. These hidden layers use the 

Rectified Linear Unit (ReLU) activation function to avoid 

vanishing gradient problems and accelerate model convergence. 

The last layer is the output layer, which provides the predicted 

results of the mechanical properties of low-alloy steel, in this case, 

Yield Strength (YS) and Tensile Strength (TS). The illustration of 

the ANN architecture is shown inFig. 2. 

 
Fig. 2. Illustration of Artificial Neural Network (ANN) 

architecture [21]. 

2.4 Tuning Parameters 

In this research, the Artificial Neural Network (ANN) model 

was tuned using hyperparameter tuning technique. The parameters 

that were adjusted were the number of layers, number of neurons, 

optimizer, learning rate, and batch size. The number of layers in 

ANN can affect the model's ability to learn complex patterns [16]. 
Therefore, variations in the number of layers were made by 

increasing or decreasing the number of layers in the model. The 

number of neurons in each layer was also analyzed by increasing 

or decreasing the number of neurons in each layer. Choosing the 

appropriate optimizer, learning rate, and batch size can optimize 

the model's performance[22][23]. 

After that, the model was evaluated to measure how well the 

machine learning model can predict the mechanical properties of 

low-alloy steel. The evaluation metric used to measure the 

performance of the model [24]: 

1. Mean Absolute Error (MAE) 
MAE measures the average absolute difference between the 

model's prediction and the target value. The lower the MAE value, 

the better the model is at making predictions. MAE can be 

calculated using Eq. 2. 

 

𝑀𝐴𝐸 =  
𝑖

𝑁
∑⌊𝑌𝑖 − 𝑍𝑖⌋   (2) 

 

Where 𝑖 is the index of data in the sample, 𝑁 is the total number of 

samples, 𝑌𝑖 is the actual value of the 𝑖thdata, and 𝑍𝑖 is the predicted 

value of the model for the 𝑖th data. 

2. Root Mean Square Error (RMSE) 

RMSE is the square root of the average of thesquare difference 

between the model's prediction and the target value. RMSE 

provides a measure that is the same unit as the target variable and 

is generally more sensitive to large differences. The lower the 

RMSE value, the better the model is at making predictions. RMSE 

can be calculated using Eq. 3. 
 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ = 1 (𝑓(𝑋𝑖) − 𝑌𝑖)

2𝑛
𝑖   (3) 

 

Where 𝑛 is the number of data used to test the model, 𝑓(𝑋𝑖) is the 

value predicted by the model for the ith data, and 𝑌𝑖 is the actual 

value for the ith data. 

3. R-squared (R²) 

R-squared (R²) is a coefficient of determination that provides 
information about how well the model fits the data. R² is the ratio 

of the total variation explained by the model to the total variation 

present in the data. The value of R² ranges from 0 to 1, and the 

higher the R² value, the better the model is at explaining the 

variation in the data. R-squared can be calculated using Eq. 4. 

 

𝑅 =  
∑ =1(𝑓(𝑋𝑖)−𝑓(�̅�))(𝑌𝑖−�̅�)𝑛

𝑖

√∑ (𝑓(𝑋𝑖)−𝑓(�̅�𝑛
𝑖=1 ))2√∑ 𝑌𝑖− �̅�)2𝑛

𝑖=1

  (4) 

 

Where 𝑓(𝑋𝑖) is the predicted value of the dependent variable (𝑌) 

based on the independent variable ( 𝑋 ) at the 𝑖 th observation, 
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𝑓(𝑋) is the average of all predicted values 𝑓(𝑋𝑖)  overall 

observations, 𝑌𝑖  is the actual observation value of the dependent 

variable at the 𝑖th observation, �̅�is the average of all observation 

values 𝑌𝑖 over all observations, and 𝑛 is the total number. 

2.5 Model Validation 

Cross-validation is a model evaluation technique used to 

measure the performance of a model by dividing the data into two 

parts: the training data and the test data. In cross-validation, the 

training data is divided into several different subsets or folds, and 

each subset is iterated as the test data, while the remaining subsets 
are used as the training data [12]. In this modeling, 10-fold cross-

validation is used, where the data is divided into 10 different 

subsets or folds and iterated 10 timesby selecting each subset 

alternately as the test data and the remaining subsets as the 

training data. The evaluation results of the model in each iteration 

will be averaged to obtain a more valid evaluation metric value, 

Fig. 3 illustrates the use of 10-fold cross-validation. 

 

 
Fig. 3. Illustration of cross-validation[23]. 

3 Results and Discussion 

3.1 Dataset 
This low-alloy steel dataset consists of 15 input variables, 

consisting of chemical elements and heat treatment temperature, 

with 2 output variables, namely Yield Strength (YS) and Tensile 

Strength (TS), with data characteristics shown in Table 1. 

 

Table 1. Statistics of low-alloy steel dataset 
Variables Data types Min Max Mean 

C Input 0.09 0.34 0.17 
Si Input 0.18 0.52 0.31 

Mn Input 0.42 1.48 0.81 
P Input 0.006 0.03 0.01 
S Input 0.003 0.022 0.01 
Ni Input 0 0.6 0.14 
Cr Input 0 1.31 0.43 
Mo Input 0.005 1.35 0.44 
Cu Input 0 0.25 0.08 
V Input 0 0.3 0.06 

Al Input 0.002 0.05 0.01 
Ni Input 0.0025 0.015 0.01 
Ceq Input 0 0.437 0.09 
Nb + Ta Input 0 0.0017 0.00 
Temperature (°C) Input 27 650 351.60 
Yield strength (MPa) Output 27 690 328.22 
Tensile strength (MPa) Output 162 6661 496.25 

3.2 Exploratory Data Analysis (EDA) 

The low-alloy steel dataset consisting of chemical elements, 

heat treatment temperature, and mechanical properties was 

analyzed using a correlation heatmap to observe the correlation 

between chemical elements, heat treatment temperature, and the 

output variables, Yield Strength (YS) and Tensile Strength (TS), 

as shown in Fig. 4. 

 

 
Fig. 4. Correlation heatmap of low alloy steel dataset. 

 

Based on the correlation heatmap of the mechanical properties 

and chemical composition of the low-alloy steel dataset, it can be 

seen that the chemical element Vanadium (V) has a strong positive 

correlation with both Yield Strength (YS) and Tensile Strength 
(TS), with correlation values of 0.64 and 0.44, respectively. This 

indicates that an increase in the concentration of V can improve 

the YS and TS values. The chemical elements Nickel (Ni) and 

Manganese (Mn) also have a strong correlation with YS, with 

correlation values of 0.47 and 0.4, respectively. On the other hand, 
the chemical elements Nitrogen (N), Sulfur (S), and Phosphorus 
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(P) have very weak correlations with YS and TS. These results are 

consistent with previous studies [25] that found that V is one of 
the chemical elements that have a significant effect on the 

mechanical properties of low-alloy steel. Additionally, studies 

[26][27] also showed that a higher concentration of V can increase 

the tensile strength and hardness of low-alloy steel. A higher 

concentration of Ni and Mn can also increase the tensile strength 

and hardness of low-alloy steel by forming a solid alloy with the 

steel matrix. Nickel can improve the tensile strength of low alloy 

steel by increasing intergranular strength and stabilizing the 

microstructure of the alloy[28][29].The next step is to normalize 

the data, the low-alloy steel dataset consisting of chemical 

elements, heat treatment temperature, and mechanical properties 

have different value ranges. To address this issue, data 

normalization is performed using the Min-MaxScaler method. 
This method works by mapping the values of each feature to a 

range of 0 to 1 as seen in Fig. 5. By normalizing the data, the 

value ranges of each feature in the dataset will be adjusted to have 

a uniform value range. The Min-Max Scaler normalization method 

has a positive impact on machine learning modeling, as some 

machine learning algorithms are sensitive to differences in data 

scale [30]. By normalizing the data, the resulting model becomes 

more stable and accurate in classification or prediction. 

Additionally, normalization can also help prevent overfitting and 

speed up the model training process[31]. 

 
 

 
Fig. 5. Comparison of original data (a) with normalized data (b). 

  

3.3 Artificial Neural Network (ANN) Modeling 

The Artificial Neural Network (ANN) model was created 

using the Python programming language with the TensorFlow 

library. The architecture of the ANN was designed according to 

the number of input variables in the dataset, which are 15 

chemical elements and heat treatment temperature. In this case, 

each neuron in the input layer receives input from one variable. 

Meanwhile, the output layer consists of only one neuron, which 

will output the prediction result of one mechanical property. In 
this study, the low-alloy steel dataset was tested with three 

different ANN architectures as shown in Table 2. 

 

Table 2. Comparison of ANN architectures 

Name 
Input 

layer 

Hidden 

layer 
Neuron 

Output 

layer 

Architecture 1 1 2 (32*16) 1 

Architecture 2 1 3 (64*32*16) 1 

Architecture 3 1 4 (128*64*32*16) 1 

 

The three models were compared, where the model that 

obtained the best evaluation metrics will be further parameter-

tuned. The low-alloy steel dataset was divided into two parts with 

80% for training and 20% for testing. The testing process was 

conducted in two stages, the first stage for predicting YS and the 
second stage for predicting TS. The testing of each ANN 

architecture was performed with the same parameter combination, 

which was using the Adam optimizer, the learning rate of 

0.0001,anda batch size of 16. This modeling applied the early 

stopping function, which stops the training if there is no 

improvement in the model's performance on the validation data. 

The test results showed that all three ANN model architectures 

were capable of providing sufficiently accurate YS predictions 

with R-squared values above 0.8. The best result was obtained 

from Architecture 2 with MAE 23.665, RMSE 38.401, and R-

squared 0.915, as seen in Table 3. However, the TS prediction 

results were very different from the YS results, where none of the 

three architectures were able to obtain R-squared values above 

0.8. Modeling with Architecture 3 obtained the best evaluation 

values with MAE 47, RMSE 74, and R-squared 0.619, as shown 

in Table 4. Based on these results, it can be seen that adding 

hidden layers and neurons does not always have a positive impact 

on the performance of the ANN model in predicting low-alloy 
steel. 

 

Table 3. YS testing results for model architectures 

Metric Architecture 1 Architecture 2 Architecture  3 

MAE 30.807 23.665 23.113 

RMSE 46.314 38.401 38.663 

R-squared 0.877 0.915 0.908 

 

Table 4. TS testing results of the model architectures 

Metric Architecture 1 Architecture 2 Architecture  3 

MAE 96.560 61.518 47.134 

RMSE 135.292 85.111 74.868 

R-squared 0.199 0.525 0.619 

 

3.4 TuningParameter 
After obtaining the best-performing model architecture, the 

next step is to perform tuning parameters to determine the optimal 
value for each hyperparameter in the model. This process is done 

by trying various combinations of hyperparameter values and 

seeing which one gives the best performance on validation or 

testing data. The goal of tuning parameters is to produce a model 

that has the best performance. The hyperparameters that are varied 

are the optimizer, learning rate and batch size. 
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3.4.1 Optimizer Search 

The search process for the optimal optimizer is done by testing 
various optimizer variations such as Adam, RMSprop, SGD, 

Adadelta, and Adamax using a combination of architecture 3 for 

YS and architecture 2 for TS, a learning rate of 0.0001, and a 

batch size of 16. The test results show that the RMSprop optimizer 

produces the best performance in predicting both mechanical 

properties. YS obtains an MAE value of 19.529, RMSE 32.795, 

and R-squared 0.931, while TS obtains an MAE value of 42.512, 

RMSE 57.285, and R-squared 0.777. The optimizer search results 

can be seen in Table 5 for YS and Table 6 for TS. 
 

Table  5. YS testing results for various optimizers 
Metric Adam RMSprop SGD Adadelta Adamax 

MAE 23.141 19.529 61.409 151.427 24.711 

RMSE 38.282 32.795 78.519 191.182 39.082 

R-squared 0.915 0.931 0.630 0.263 0.908 

 

Table 6. Testing results of various optimizers for TS 
Metric Adam RMSprop SGD Adadelta Adamax 

MAE 47.134 42.512 148.934 191.615 50.403 

RMSE 74.868 57.285 189.800 249.311 76.460 

R-squared 0.619 0.777 0.144 -3.071 0.617 

3.4.2 Learning Rate Search 

After obtaining the most optimal optimizer, a search for the 

best learning rate was performed with variations of 0.01, 0.001, 

and 0.0001 using the RMSprop optimizer and a batch size of 16. 

The search results for YS prediction showed that the best 

performance was achieved with a learning rate of 0.0001, with 

MAE of 19.529, RMSE of 32.795, and R-squared of 0.931. 

Meanwhile, the best performance for TS was achieved with a 

learning rate of 0.001, with MAE of 35.586, RMSE of 49.104, and 
R-squared of 0.868. The results of the best learning rate search can 

be seen in Table 7 for YS and Table 8 for TS. 
 

Table 7. Results of YS testing against learning rate 
Metric Lr = 0.01 Lr = 0.001 Lr = 0.0001 

MAE 23.903 31.195 19.529 

RMSE 39.188 42.449 32.795 

R-squared 0.907 0.891 0.931 

 

Table 8. TS testing results for various learning rates 
Metric Lr = 0.01 Lr = 0.001 Lr = 0.0001 

MAE 55.923 35.586 42.512 

RMSE 69.013 49.104 57.285 

R-squared 0.687 0.868 0.777 

3.4.3 Batch Size Search 

A batch size search was performed by testing the model with 

each of the best parameter combinations obtained earlier, and then 

the batch size value was varied from 16, 18, 32, and 64. The 

model parameters for YS prediction are Architecture 3, optimizer 

Adam, learning rate 0.0001, while the TS parameter combination 
is Architecture 2, optimizer RMSprop, learning rate 0.001. The 

best batch size search results for YS prediction were obtained with 

the best model performance at a batch size of 32 with MAE 

19.027, RMSE 26.686, and R-squared 0.957, while the TS 

prediction model obtained the best performance with a batch size 

of 16 with MAE 35.586, RMSE 49.104, and R-squared 0.868. The 

results of the best batch size search can be seen in Table 9 for YS 

and Table 10 for TS. 
 

Table  9.  Results of YS testing against batch size 
Metric 8 16 32 64 

MAE 20.715 22.362 19.027 23.388 

RMSE 35.666 37.462 26.686 37.885 

R-squared 0.923 0.931 0.957 0.913 

 

Table 10. Results of TS testing on batch size 
Metric 8 16 32 64 

MAE 33.861 35.586 56.256 54.216 

RMSE 51.902 49.104 75.267 78.664 

R-squared 0.852 0.868 0.690 0.662 

Based on the previous hyperparameter results, varying the 

optimizer, learning rate, and batch size had a positive impact on 
the performance of the ANN model in predicting the mechanical 

properties of low-alloy steel. By tuning these parameters, two 

model combinations were obtained: Architecture 3, RMSprop 

optimizer, learning rate of 0.0001, batch size of 32 for YS 

prediction model, and Architecture 2, RMSprop optimizer, 

learning rate of 0.001, batch size of 16 for TS prediction model. 

The evaluation metrics of the testing of these two models can be 

seen in Fig. 6. 

 

 
Fig. 6. Model evaluation metrics. 

 

Additionally, the performance of both combinations of ANN 

models was evaluated by looking at the loss values generated by 

the models during training and testing, as shown in Fig.7. The 

training and testing graphs tend to decrease similarly as the 

number of epochs increases, indicating that the models can 

generalize well on the testing data. 

The results of this study indicate that the machine learning 
model using Artificial Neural Network (ANN) for predicting the 

mechanical properties of low alloy steel based on chemical 

composition and heat treatment has better performance in 

predicting YS compared to TS. The predicted results of the model 

testing data can be seen in Fig. 8. 

3.5 Model Validation 

After obtaining the ANN model, the next step is to validate the 

model using cross-validation. In this modeling, a 10-fold cross-

validation is utilized, where the data is divided into 10 different 

subsets or folds. The process involves iterating 10 times, selecting 

each subset in turn as the test data and the remaining subsets as the 

training data. This provides a good balance between variance and 

bias in estimating model performance. If the value of 𝐾  is too 

small, the model's performance estimation tends to have high 

variance. A 𝐾 value of 10 is sufficiently large to provide stable 

estimates while still being efficient in data utilization [32]. 

Moreover, a 𝐾 value of 10 helps mitigate the risk of overfitting as 

the model is evaluated on various data subsets, making it more 

likely to detect more common patterns [12]. The prediction results 

of the ANN model using 10-fold cross-validation can be seen in 

Fig.9. The evaluation metrics of the model using 10-fold cross-
validation indicate that the ANN model achieved a Mean Absolute 

Error (MAE) of 18.197, Root Mean Square Error (RMSE) of 23, 

and R-squared of 0.969 for predicting YS. Additionally, for TS 

prediction, the evaluation resulted in an MAE of 27, RMSE of 

36.696, and R-squared of 0.907, as shown in Fig.10. These results 

demonstrate that the utilized ANN model exhibits stable 

performance and can be relied upon for predictions on larger and 

diverse datasets. 
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(a)  (b) 

Fig. 7. Model loss for YS prediction (a) and TS prediction (b). 

 

 

 

 
(a)  (b) 

Fig. 8. Results of YS prediction (a) and TS prediction (b). 

 

 

 

 
(a)  (b) 

Fig. 9. Results of YS prediction (a) and TS prediction (b). 
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Fig. 10. Model evaluation metrics with cross-validation. 

4 Conclusion 

Based on the results of the prediction modeling of low-alloy 

steel mechanical properties using Artificial Neural Network 

(ANN), it can be concluded that modeling with ANN provides 

good results. Chemical elements such as Vanadium (V), Nickel 

(Ni), and Manganese (Mn) have a strong positive correlation with 

Yield strength (YS) and Tensile strength (TS). Increasing the 

number of hidden layers and neurons in the ANN architecture 

does not directly improve the performance of the model in 
predicting low-alloy steel mechanical properties. Tuning the 

hyperparameterscan determine the best parameters for the ANN 

modeling and improve the model performance. The evaluation 

results of the model with the observation of the loss value, the 

training and testing loss graphs tend to decrease as the number of 

epochs increases, indicating that the model can generalize well on 

the testing data. The results of model validation with cross-

validation using k=10 showed that the designed ANN model has 

stable and reliable performance in predicting a larger and more 

diverse dataset. The ANN modeling obtained from this study 

showed that the ANN model has better performance in predicting 

YS compared to TS. 
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