DESULFURISASI DAN PENYERAPAN MERKURI SECARA SIMULTAN DARI BATUBARA PERINGKAT RENDAH (ACEH BARAT) UNTUK APLIKASI POWER PLANT DENGAN ADSORBEN ZEOLIT
Abstract
Full Text:
PDF (Bahasa Indonesia)References
Ansyori, I., 2011. Pengendalian emisi merkuri di cerobong industri pada penggunaan batu bara sebagai bahan bakar. Ecolab 5, 1–44.
Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., Hausler, R., 2008. Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 9. https://doi.org/10.1088/1468-6996/9/1/013007
ÇakIcǧlu-Ozkan, F., Ülkü, S., 2008. Diffusion mechanism of water vapour in a zeolitic tuff rich in clinoptilolite. J. Therm. Anal. Calorim. 94, 699–702. https://doi.org/10.1007/s10973-008-9357-8
Chen, J.C., Wey, M.Y., Lin, Y.C., 1998. The adsorption of heavy metals by different sorbents under various incineration conditions. Chemosphere 37, 2617–2625. https://doi.org/10.1016/S0045-6535(98)00161-1.
Giang, A., Stokes, L.C., Streets, D.G., Corbitt, E.S., Selin, N.E., 2015. Impacts of the minamata convention on mercury emissions and global deposition from coal-fired power generation in Asia. Environ. Sci. Technol. 49, 5326–5335. https://doi.org/10.1021/acs.est.5b00074.
Hlincik, T., Buryan, P., 2013. Desulfurization of boiler flue gas by means of activated calcium oxide. Fuel Process. Technol. 111, 62–67. https://doi.org/10.1016/j.fuproc.2013.01.018.
Is, I., Gani, A., 2015. Pengaruh Penambahan Kaolin Terhadap Reduksi Logam Pb pada Proses Pembakaran Batubara The Effect of Kaolin Addition on the Leads Reduction in Coal Combustion Process 10.
Kurniasari, L., 2010. Potensi Zeolit Alam sebagai Adsorben Air pada Alat Pengering. J. Momentum 6, 17–20. https://doi.org/10.14710/reaktor.13.3.178-184.
Liu, Y., Bisson, T.M., Yang, H., Xu, Z., 2010. Recent developments in novel sorbents for flue gas clean up. Fuel Process. Technol. 91, 1175–1197. https://doi.org/10.1016/j.fuproc.2010.04.015.
Ma, Y., Qu, Z., Xu, H., Wang, W., Yan, N., 2014. Investigation on mercury removal method from flue gas in the presence of sulfur dioxide. J. Hazard. Mater. 279, 289–295.
https://doi.org/10.1016/j.jhazmat.2014.07.012
Pavlish, J.H., Hamre, L.L., Zhuang, Y., 2010. Mercury control technologies for coal combustion and gasification systems. Fuel 89, 838–847. https://doi.org/10.1016/j.fuel.2009.05.021
Syamsuddin, Y., Rizal, S., Materials, A., 2013. Use of Biomass as Co-Fuel in Briquetting of Low-Rank Coal : Strengthen the Energy Supply and Save the Environment 7, 643–648.
Wang, J., Zhang, Y., Han, L., Chang,L., Bao, W., 2013. Simultaneous removal of hydrogen sulfide and mercury from simulated syngas by iron-based sorbents. Fuel 103, 73–79. https://doi.org/10.1016/j.fuel.2011.10.056
Wdowin, M., Wiatros-Motyka, M.M., Panek, R., Stevens, L.A., Franus, W., Snape, C.E., 2014. Experimental study of mercury removal from exhaust gases. Fuel 128, 451–457. https://doi.org/10.1016/j.fuel.2014.03.041
Wilcox, J., Rupp, E., Ying, S.C., Lim, D.H., Negreira, A.S., Kirchofer, A., Feng, F., Lee, K., 2012. Mercury adsorption and oxidation in coal combustion and gasification processes. Int. J. Coal Geol. 90–91, 4–20. https://doi.org/10.1016/j.coal.2011.12.003
Yao, H., Naruse, I., 2005. Control of trace metal emissions by sorbents during sewage sludge combustion. Proc. Combust. Inst. 30 II, 3009–3016. https://doi.org/10.1016/j.proci.2004.07.047
Zheng, Y., Jensen, A.D., Windelin, C., Jensen, F., 2012. Review of technologies for mercury removal from flue gas from cement production processes. Prog. Energy Combust. Sci. 38, 599–629. https://doi.org/10.1016/j.pecs.2012.05.001
DOI: http://dx.doi.org/10.30811/jstr.v16i1.632
Refbacks
- There are currently no refbacks.
Jurnal Sains dan Teknologi Reaksi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
© 2016 All rights reserved |Jurnal Sains dan Teknologi Reaksi p-ISSN: 1693-248X , e-ISSN: 2549-1202.