DEVELOPMENT OF POLYURETHANE/CLAY NANOCOMPOSITES BASED ON PALM OIL POLYOL

Ummi Habibah, A Adriana, S Sariadi, M Muhammad, Halim Zaini, Sabila Yasara SA, F Fachraniah

Abstract


Polyurethanes (PURs) are highly adaptable polymeric substances with a variety of physical and chemical attributes. High abrasion resistance, tear strength, shock absorption, flexibility, and elasticity are just a few of the desirable qualities of PURs. Despite their generally low thermal stability, this can be enhanced by utilizing clay that has been treated. From renewable resources, polyurethane/clay nanocomposites have been created. By combining oleic acid from palm oil with glycerol, a polyol for the manufacture of polyurethane by reaction with an isocyanate was created. As a catalyst and emulsifier, dodecylbenzene sulfonic acid (DBSA) was employed. Octadodecylamine (ODA-mont) and cetyltrimethyl ammonium bromide (CTAB-mont) were used to treat the unaltered clay (kunipia-F).  The d-spacing in CTAB-mont and ODA-mont were bigger than that of the pure-mont (1.142 nm) at 1.571 nm and 1.798 nm, respectively. A pre-polymer technique was used to create polyurethane/clay nanocomposites, and the micro-domain structures of segmented PU, CTAB-mont-PU 1, 3, and 5 wt%, and ODA-mont-PU 1, 3, and 5 wt% were determined by FTIR spectra. X-ray diffraction (X-RD) was used to evaluate the nanocomposites' morphology, and the results revealed that all of the intercalated type's nanocomposites were created as a result of this effort. When the surfaces of the materials were examined using transmission electron microscopy (TEM) observation and scanning electron microscopy (SEM), these were further confirmed. Thermogravimetric analysis (TGA) was used to examine thermal stability.Pure PU begins to degrade around 200°C, which is lower than the degrading rates of CTAB-mont PU and ODA-mont PU, which occur at roughly 318°C and 330°C, respectively. Both pure polyurethane (PU) and PU/clay nanocomposites have their mechanical properties, including dynamic mechanical properties, tested. With only a 5 weight percent addition of the montmorillonite CTAB-mont PU or ODA-mont PU, respectively, the tensile strength of the nanocomposites increased by more than 214% and 267%, respectively, demonstrating the impressively positive impact of the modified organoclay on the strength and elongation at break of the nanocomposites.

Keywords: Clay,Palm Oil, Polyurethane


Full Text:

PDF

References


Abdalla, M.O., Dean, D. and Campbell, S. 2002. Viscoelastic and mechanical properties of thermoset PMR-type polyimide-clay nanocomposites. Polymer 43: 5887

Ahmad, S., Leong, Y.C., Mohamed, I. and Ong, E.L. 1987. Proc.1987. Int.Oil Palm/Palm oil Conf.(Conf. II: Technology), Kuala Lumpur, Malaysia, organized by PORIM/ISP.

Ahmadi, S.J., Huang, Y.D. and Li, W. 2004. Review synthetic routes, properties and future applications of polymer-layered silicate nanocomposite. Journal of materials scence 39: 1919-1925

Agag, T., Koga, T. and Takeichi, T. 2001. Studies on thermal and mechanical properties of polyimide-clay nanocomposites. Polymer 42: 3399-3408.

Alexandre, M and Dubois, P. 2000. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports 28: 1-63

Alexandrovich, P.S., Karasz, F.E. and Macknight, W.J. 1980. Dielectric study of polymer compatibility: Blends of polystyrene/poly-2-ehlorostyrene. J. Macromolec. Sci. Phys., B17: 501.

Anseth, K.S, Bowman, C.N. and Peppas, L.B. 1996. Mechanical properties of hydrogels and their experimental determination. Biomaterials 17. 1647-1657

Assink, R.A. 1977. The study of domain structure in polyurethanes by nuclear magnetic resonance. J. Polym. Sci., Polym. Phys. Ed.15: 59.

Badri, K.H., Othman, Z. and Ahmad, S.H. 2004. Rigid polyurethane foams from oil palm resources. J.Mater.Sci. 39 ,5541-5542

Bakare, I.O., Pavithran, C., Okieimen, F.E. and Pillai, C.K.S. 2006. Polyesters from Renewable Resources: Preparation and Characterization. Journal of Applied Polymer Science 100: 3748–3755

Baryeh, E.A. 2001. Effects of Palm Oil Processing Parameter on Yield. J.Food Eng. 48 :1-6.

Bhunia, H.P., Jana, R.N., Basak, A., Lenka, S. and Nando, B. 1998. Synthesis of Polyurethane from Cashew Nut Shell Liquid (CNSL), a Renewable Resource, Journal of Polymer Science: Part A: Polymer Chemistry 36: 391–400

Boczkowska, A and Gruin, I. 1999. Polyurethanes from crystalline prepolymers European Polymer Journal 35:1569-1579

Boguslavskii, D.B., Borodushkina, Kh. N. and Suvorova, Z.F. 1979. Synthesis of poly (diene-urethanes) within diene elastomers. Polymer Science U.S.S.R.20: 1386-1392.

Brown, M.E., Maciejewski, M., Vyazovkin, S., Nomen, R., Sempere, J., Burnhame, A., Opfermann, J., Strey, R., Anderson, H.L., Kemmler, A., Keuleers, R., Janssens, J., Desseyn, H.O., Lii, C.R., Tang, T.B., Roduit, B., Malek, J. and Mitsuhashi, T. 2000. Computational aspects of kinetic analysis Part A: The ICTAC kinetics project-data, methods and results. Thermochimica Acta 355 : 125-143

Bushfield, W.K. 1982. Dynamic mechanical properties of some polycaprolactone based, crosslinked, crystallizable polyurethanes”, J. Maeromolec. Sci. Chem., A17: 297

Camberlin, Y and Pascault, J.P.1983. Phase segregation kinetics in segmented linear polyurethanes: Relations between equilibrium time and chain mobility and between equilibrium degree of segregation and interaction parameter. J. Polym. Sci., Polym. Chem. Ed. 22: 1835

Camberlin, Y and Pascault, J.P. 1983. Quantitative DSC evaluation of phase segregation rate in linear polyurethanes and polyurethaneureas. J. Polym. Sci., Polym. Chem. Ed. 21: 415.

Chang, J.H. and Park, D.K. 2001. Nanocomposites of Poly(ethylene terephthalate-co-ethylene naphthalate) with Organoclay. Journal of Polymer Science: Part B: Polymer Physics 39: 2581–2588

Chang, J.H., An, Y.U., Ryu, S.C. and Giannelis, E.P. 2003.Synthesis of Poly (buty1ene terephthalate) Nanocomposite by Insitu Interlayer Polymerization and Characterization of Its Fiber (I). Polymer Bulletin 51: 69-75

Chen Tsai, C.H.Y., Thomas, E.L., Macknight, W.J. and Schneider, N.S. 1986. Structure and morphology of segmented polyurethanes. 3. Electron microscopy and small angle X-ray scattering studies of amorphous random segmented polyurethanes. Polymer 27: 659.

Chen, T.K., Tien, Y.I. and Wei, K.H. 1999. Synthesis and characterization of novel segmented polyurethane/clay nanocomposite via poly (-caprolactone)/clay. Journal of Polymer Science: Part A: Polymer Chemistry 37: 2225-2233

Chen, T.K., Tien, Y.I. and Wei, K.H. 2000. Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer 41: 1345-1353

Chen, G., Ma, Y. and Qi, Z. 2001 Preparation and morphological study of an exfoliated polystyrene/montmorillonite nanocomposites. Scripta Materialia 44 (1) 125-128.

Chen, Y., Zhou, S., Yang, H., Gu, G. and Wu, L. 2004. Preparation and characterization of nanocomposite polyurethane. Journal of Colloid and Interface Science 279 : 370-378

Chen, Y., Zhou, S., Gu, G. and Wu, L. 2006. Microstructure and properties of polyester-based polyurethane/titania hybrid films prepared by sol–gel process Polymer 47 : 1640–1648

Choi, W.J., Kim, S.H., Kim, Y.J. and Kim, S.C. 2004. Synthesis of chain-extended organifier and properties of polyurethane/clay nanocomposites. Polymer 45: 6045-6057

Czech, P., Okrasa, L., Boiteux, G., Mechin, F. and Ulanski, J. 2005. Polyurethane networks based on hyperbranched polyesters: Synthesis and molecular relaxations. Journal of Non-Crystalline Solids 351: 2735–2741.

Czech, P., Okrasa, L., Me´chin, F., Boiteux, g.and Ulanski, J. 2006. Investigation of the polyurethane chain length influence on the molecular dynamics in networks crosslinked by hyperbranched polyester. Polymer 47. 7207-7215

Chun, B.C., Cho, T.K., Chung, Y.C. 2006. Enhanced mechanical and shape memory properties of polyurethane block copolymers chain-extended by ethylene diamines. European Polymer Journal 42 : 3367-3373

Dai, X., Xu, J., Guo, X., Lu, Y., Shen, D., Zhao, N., Luo, X. and Zhang, X., 2004. Study on Structure and Orientation Action of Polyurethane Nanocomposites. Macromolecules 37, 5615.

Dickie, R.A. 1979 “Mechanical properties (small deformations) of multiphase polymer blends, Polymer Blends”, Chap. 8, Vol. I (D. R. PAUL and S. NEWMAN Eds), Academic Press, New York.

Delides, C and Pethrick, R.A. 1982. Ultrasonic and dielectric studies of segmented polyurethanes. Eur. Polym. J. 17: 675.

Duquesne, S., Jama, C., Le Bras, M., Delobel, R., Recourt, P. and Gloaguen, J.M.. 2003. Elaboration of EVA–nanoclay systems—characterization, thermal behaviour and fire performance. Composite Science and Technology 63 : 114

Edwards K.N (ed).1981. Urethane Chemistry and Applications, pp. 80-114. American Chemical Society. Washington, D.C., U.S.A

Eychenne, V. and Mouloungui, Z. 1999. High concentration of 1-(3-)monoglycerides by direct partial esterification of fatty acids with glycerol. Fett/Lipid 101 : 424–427

Falkes, M.T (ed), “Processing, Structure and Properties of Block Copolymer”, pp. 25-78. Elsivier Publisher, 1955, London.

Fisher, H.R., Gielgens, L.H. and Koster, T.P.M. 1999. Nanocomposites from polymers and layered materials. Acta Polym. 50 : 122-126

Fu, X and Qutubuddin, S. 2001. Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 42 : 807-813

Fornes, T.D. and Paul, D.R. 2003. Modeling properties of nylon 6/clay naocomposites using composites theories. Polymer 44 : 4993

Gertzmann, R and Gurtler, C. 2005. A catalyst system for the formation of amides by reaction of carboxylic acids with blocked isocyanates. Tetrahedron Letters 46 : 6659–6662

Giannelis, E.P. 1996. Polymer layered silicate nanocomposite. Advanced Materials 8: 29-35

Gilman, J.W. 1999.Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Applied clay science 15 : 31-49.

Gopakumar, S. and Gopinathan Nair, M.R. 2006. Solution properties of NR/PU block copolymer by size-exclusion chromatography and viscometry. Journal of Polymer Science : Part B : Polymer Physics 44 : 2104-2111

Gorrasi, G., Tortora M. and Vittoris, V. 2005. Synthesis and Physical Properties of Layered Silicates/ Polyurethane Nanocomposites. Journal of Polymer Science: Part B: Polymer Physics 43. 2454

Gorasi, G., Tortora, M., Vittoria, V., Pollet, E., Lepoittevin, B., Alexandre, M. and Dubois, P. 2003. Vapour barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion. Polymer 44 : 2271-2279.

Gu, A. and Liang, G. 2003. Thermal degradation behaviour and kinetic analysis of epoxy/montmorillonite nanocomposites. Polymer Degradation and Stability 80 : 383-391.

Guo, A., Demydov, D., Zhang, W. and Petrovic, Z.S. 2002. Polyols and Polyurethanes from Hydroformylation of Soybean Oil “, Journal of Polymers and the Environment 10: 49-52.

Hashimoto, T., Todo, A., Itoi, H. and Kawai, H. 1977. Domain-boundary structure of styrene isoprene block copolymer films cast from solutions. 2. Quantitative estimation of the interfacial thickness of lamellar microphase systems. Macromolecules 10: 377-384

Hamilton, R.J. (ed). 1995. Developments in oils and fats”, pp.32-55. Chapman & Hall, Great Britain

Heal, G.R. 2005. A generalization of the non-parametric, NPK(SVD) kinetic method Part 1. Isothermal experiment. Thermochimica Acta 426: 15-21

Hilmi Mahmood, M. 1987. The formation and properties of segmented polyurethane elastomers. Nuclear Energy Unit-Prime Minister’s Department. Malaysia.

Hilmi Mahmood, M ( patent application), “Method For Manufacturing Palm Oil Based Hydroxyl Containing Products For Use In Making Polyurethane Materials”, No fail

Horgnies, M.and Ceretti, E.D. 2006. Study of siloxane additives migration to the surface of polyester-(melamine)-polyurethane coatings: Aging effects after ethanol cleaning. Progress in Organic Coatings 55 : 27–34

Howard, G.T. 2002. Biodegradation of polyurethane: a review. International Biodeterioration & Biodegradation 49: 245 – 252

Hsueh, C.H. 2000. Young's modulus of unidirectional discontinuous - fibre composites. Composites Science and Technology 60 . 2671

Hu, Y., Song, L., Xu, J., Yang, L., Chen, Z. and Fan, W. 2001.Synthesis of polyurethane/clay intercalated nanocomposites. Colloid Polym. Sci., 279: 819-822

Hussain, M. and Simon, G.P. 2003. Fabrication of phosphorus-clay polymer nanocomposites for fire performance. Journal of materials Science Letters 22: 1471-1475

Jayaraman, K. 2003. Manufacturing sisal-propylene composite with minimum fiber degradation. Journal of Composite Science and Technology 63: 116

Jia, Q.M., Zheng, M., Zhu, Y.C., Li, J.B. and Xu, C.Z. 2007. Effects of organophilic montmorillonite on hydrogen bonding, free volume and glass transition temperature of epoxy resin/polyurethane interpenetrating polymer networks. European polymer journal 43, 35

Jiang, X., Li, J., Ding, M., Tan, H., Liang, Q., Zhong, Y., Fu, Q. 2007. Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(e-caprolactone) and poly(ethylene glycol) as soft segment. European Polymer Journal.

Kato, M. and Usuki, A. 2000. Polymer-clay nanocomposites. In Polymer-clay nanocomposites, ed. Pinnavaia, T.J. and Baell, G.W. pp 97-109. England : John Wiley & Sons, Ltd.

Kashiwagi, T., Harris Jr., R.H., Zhang, X., Briber, R.M., Cipriano, B.H., Raghavan, S.R., Awad, W.H. and Shields, J.R. 2004. Flame retardant mechanism of polyamide 6–clay nanocomposites. Polymer 45: 881–891

Koberstein, J.T and Stein, R.S. 1983. Small-angle X-ray scattering measurements of diffuse phase boundary thickness in segmented polyurethane elastomers. J. Polym. Sci., Polym.Phys. Ed.21: 2181

Koberstein, J.T. and Stein, R.S. 1984. Small-angle light scattering studies of macrophase separation in segmented polyurethane block copolymers. Polymer 25: 171.

Kodera, Y. and McCoy, B.J. 2002. Distribution kinetics of polymer thermogravimetric analysis : A model for chain-end and random scission. Energy & Fuels 16 : 119-126.

Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., Kamigato, O. 1993. Mechanical properties of Nylon 6-Clay Hybrid. Journal of material Research 8: 1185

Kojio, K., Nakamura, S. and Furukawa, M. 2004. Effect of side methyl groups of polymer glycol on elongation induced crystallization behaviour of polyurethane elastomers. Polymer 45 : 8147-8155.

Kornmann, X., Lindberg, H. and Berglund, L.A. 2001. Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on structure. Polymer 42: 1303–1310.

Krol, P. and Pitera, B.P. 2003. A study on the synthesis of urethane oligomers. European Polymer Journal 39 : 1229–1241

Krol, P. 2007. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in Materials Science 52 : 915-1015

Krone, C.A. and Klingner, T.D. 2005. Isocyanates, polyurethane and childhood asthma. Pediatr Allergy Immunol 16: 368–379

Kuan, H.C., Chuang, W.P., Ma, C.C.M., Chiang, C.L. and Wu, H.L. 2005 Synthesis and characterization of a clay/waterborne polyurethane nanocomposite. Journal of material science 40: 179-185

.

Lam, C.K., Cheung, H.Y., Lau, K.T., Zhou, L.M., Ho, M.W. and Hui, D. 2005. Cluster size effect in hardness of nanoclay/epoxy composites. Composites Part B: Engineering 36. 263

Lan, T. and Pinnavaia, T.J. 1994.Clay-Reinforced Epoxy Nanocomposites. Chem. Mater. 6: 2216-2219

Lagaly,G. 1986. Interaction of alkylamines with different types of layered compounds. Solid State Ionics 22 : 43-51

Latere Dwan’isa, J.P., Mohanty, A.K., Misra, M., Drzal, L.T. and Kazemizadeh, M. 2004. Biobased polyurethane and its composite with glass fiber. Journal of materials science 39: 2081-2087

Luda, M.P., Costa, L., Bracco, P. and Levchik, S.V. 2004. Relevant factors in scorch generation in fire retarded flexible polyurethane foams II Reactivity of isocyanate, urea and urethane groups. Polymer Degradation and Stability 86 : 43-50

LeBaron, P.C., Wang, Z. and Pinnavaia, T.J. 1999. Polymer-layered silicate nanocomposites: an overview. Applied Clay Science 15: 11–29

Lee, H.S., Wang, Y.K., Macknight, W.J. and Hsu, S.L. 1988. Spectroscopic analysis of phase-separation kinetics in model polyurethanes. Macromolecules, 1988, 21, 270-273.

Lee, H.S., Wang, Y.K. and Hsu, S.L. 1987. Spectroscopic analysis of phase separation behavior of model polyurethanes. Macromolecules 20: 2089-2095.

Lee, J. and Giannelis, E. 1997. Polymer Preprints 38 : 688–689

Lee, J., Takekoshi, T. and Giannelis, E., 1997. Mater. Res. Soc. Symp. Proc. 457 : 513–518

Lepoittevin, B., Devalckenaere, M., Pantourstier, N., Alexandre, M., Kubies, D., Calberg, C., Jerome, R. and Dubois, P. 2002. Poly (-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties. Polymer 43: 4017 – 4023

Lindermeir, E. and Tank, V. 1994. The spectral emissivity of natural surfaces measured with a Fourier transform infrared spectrometer. Measurement 14. 177-187

Lu, Y., Tighzert, L., Dol, P. and Erre, D. 2005. Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources”, Polymer 46: 9863-9870

Markusch, P.H and Schmelzer, H.G. 1997. Synthesis of Polyurethane Elastomers, Presented at a meeting of the Rubber Division, American Chemical Society. Anaheim, California

Masiulanis, B., Hrouz, J., Baldrian, J., Ilavsky, M. and Dusek, K. 1987. Dynamic mechanic behavior and structure of polyurethaneimides”, J. Appl. Polym. Sci., 34: 1941.

Maxwell, R.S., Chambers, D., Balazs, B., Cohenours, R. and Sung, W. 2003. NMR analysis of -radiation induced degradation of halothane-88 polyurethane elastomers. Polymer Degradation and Stability 82 : 193-196

Mecking, S. 2004. Nature or Petrochemistry?—Biologically Degradable Materials. Angew. Chem. Int. Ed. 43 : 1078 –1085

Mohan, T.P., Kumar, M.R. and Velmurugan, R. 2006. Thermal, mechanical and vibration characteristics of epoxy-clay nanocomposites. J Mater Sci 41:5915–5925

Nam, P.H., Maiti, P., Okamoto, M., Kotaka, T., Hasegawa, N. and Usuki, A. 2001. A hierarchical structure and properties of intercalated polypropylene/clay nanocomposites. Polymer 42: 9633–40

Nasar, A.S., Jikei, M. and Kakimoto, M. 2003. Synthesis and properties of polyurethane elastomers crosslinked with amine-termined AB2-type hyperbranched polyamides. European Polymer Journal 39 : 1201

Neumueller, W. and Bonart, R. 1982. Investigation of domain structure in segmented polyurethanes by means of small-angle X-ray scattering. J. Macromolec. Sci. Phys. B21: 203

Nunes, R.C.R, Foncesa, J.L.C. and Pereira, M.R. 2000. Polymer-filler interactions and mechanical properties of polyurethane elastomers. Polymer Testing 19: 93-103

O’Brien, R.D. 2004. Fats and Oil Formulating and processing for applications. Second edition. CRC Press. USA .

Ogunniyi, D.S. 2006. Castor oil: A vital industrial raw material. Bioresource Technology 97: 1086-1091

Oertel, G. (Editor). 1985. Polyurethane handbook, pp. 5-17. Hanser Publishers. Munich

Oprea, S., Vlad, S. and Stanciu, A. 2001. Poly(urethane-methacrylate)s. Synthesis and characterization. Polymer 42 :7257-7266

Oprea, S. and Oprea, V. 2002. Mechanical behavior during different weathering test of the polyurethane elastomers film. European Polymer Journal 38 : 1205-1210

Ortyl, E., Kucharski, S., and Gotszalk, T. 2005. Refractive index modulation in the polyurethane films containing diazo sulfonamide chromophores. Thin Solid Films 479 : 288– 296

Pattanayak, A. and Jana, S.C. 2005a. Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods. Polymer 46: 3275-3288

Pattanayak, A. and Jana, S.C. 2005b. Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties. Polymer 46.5183

Park, H.B., Kim, C.K. and Lee, Y.K. 2002.Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes. Journal of Membrane Science 15: 257

Pasch, H. and Trathnigg, B. 1998. HPLC of Polymer, pp 41. Berlin: Springer

Paul, C., Gopanathan Nair, M.R., Neelakantan, N.R., Koshy, P., Idage, B.B. and Bhelhekar, A.A. 1998. Segmented block copolymers of natural rubber and 1.3-butanediol-toluene diisocyanate digomers. Polymer 39: 6861

Peterson, D.J., Vyazovkin, S. and Wight, C.A. 1999. Kinetic study of stabilizing effect of oxygen on thermal degradation of Poly(methyl metcacrylate). J.Phys.Chem. B. 103 : 8087-8092

Petrovic, Z.S and Ferguson, J. 1991. Polyurethane Elastomers. Progress in Polymer Science 16: 695-836.

Pinto, V.A., Visconte Yuan, L.L. and Reis Nunes, R.C. 2001. Mechanical properties of thermoplastic polyurethane elastomer with mica and aluminum trihydrate. European Polymer Journal 37: 1935-1937

Prisacariu, C., Olley, R.H., Caraculacu, A.A., Bassett, D.C. and Martin, C. 2003. The effect of hard segment ordering in copolyurethane elastomers obtained by using simultaneously two types of diisocyanates. Polymer 44 : 5407-5421

Ray, S.S., Maiti, P., Okamoto, M., Yamada, K. and Ueda, K. 2002. New Polylactide/Layered Silicate Nanocomposites. 1. Preparation, Characterization, and Properties. Macromolecules 35: 3104-3110

Ray, S.S. and Okamoto, M. 2003. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in polymer science 28: 1539-1641

Rekondo, A., Fernandez-Berridi, M.J. and Irusta, L 2006. Synthesis of silanized polyether urethane hybrid systems. Study of the curing process through hydrogen bonding interactions. European Polymer Journal 42. 2069

Redlich, C.A. and Karol, M.H. 2002. Diisocyanate asthma: clinical aspects and immunopathogenesis. International Immunopharmacology 2, 213-224

Rihayat, T., Saari, M., Hilmi Mahmood, M., Wan Yunus, W.M.Z., Suraya, A.R., Dahlan, K,Z.H.M. and Sapuan, S.M. 2007. Mechanical Characterisation of Polyurethane/Clay Nanocomposites. Polymers & Polymer Composites 15: 597-602

Rogulska, M., Podkomcielny, W., Kultys, A., Pikus, S. and Posdzik, E. 2006. Studies on thermoplastic polyurethanes based on new diphenylethane-derivative diols. I. Synthesis and characterization of nonsegmented polyurethanes from HDI and MDI. European Polymer Journal 42: 1786-1797

Romero, G. and Sanchez (Eds.). 2004 Functional Hybrid Materials. Wiley-VCH. Weinheim.

Salunkhe, D.K., Chavan, J.K., Adsule, R.N. and Kadam, S.S. 1992. World oilseeds chemistry, technology, and utilization. An avi Book Published by Van Nostrand Reinhold. New York. pp. 512-515

Sanchez-Adsuar, M.S. 2000. Influence of the composition on the crystallinity and adhesion properties of thermoplastic polyurethane elastomers. International Journal of Adhesion and Adhesives 20 : 291-298

Serrano, M., Macknight, W.J., Thomas, E.L. and Ottino, J.M. 1987. Transfort-morphology relationships in segmented polybutadiene polyurethanes: 1.Experimental result. Polymer 28: 1667

Sheth, J.P., Wilkes, G.L., Fornof, A.R., Long, T.L. and Yilgor, I. 2005. Probing the hard segment phase connectivity and percolation in model segmented poly(urethane urea) copolymers. Macromolecules 38: 5681

Serrano, M., Macknight, W.J., Thomas, E.L. and Ottino, J.M. 1987. Transport-morphologyrelationships in segmented polybutadiene polyurethanes: 1. Experimental results. Polymer 28: 1667.

Silva Araújo, R.C and Duarte Pasa, V.M. 2004. New Eucalyptus tar-derived polyurethane coatings. Progress in Organic Coating 51: 6-14

Song, M., Xia, H.S., Yao, K.J. and Hourston, D.J. 2005a. A study on phase morphology and surface properties of polyurethane/organoclay nanocomposite.Eur. Polym. J. 41, 259-266 (1)

Song, L., Hu, Y., Tang, Y., Zhang, R., Chen, Z. and Fan, W. 2005b. Study on the properties of flame retardant polyurethane/organoclay nanocomposites. Polymer Degradation and Stability 87 : 111-116.

Suresh, K.I. and Kishanprasad, V.S. 2005. Synthesis, structure, and properties of novel polyol from cardanol and developed polyurethanes. Ind.Eng.Chem.Res. 44 : 4504-4512

Suhara, F., Kutty, S.K.N. and Nando, G.B. 1998. Thermal degradation of short polyester fiber-polyurethane elastomer composite. Polymer Degradation and Stability 61 : 9-13

Tang, Z., Maroto Valer, M.M., Andresen, J.M., Miller, J.W., Listemenn, M.L., McDaniel, P.L., Morita, D.K. and Furlan, W.R. 2002. Thermal degradation behavior of rigid polyurethane foams prepared with different fire retardant concentrations and blowing agents. Polymer 43: 6471-6479.

Tien, Y.I and Wei, K.H. 2001. Hydrogen bonding and mechanical properties on segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios”, Polymer 42 : 3213-3221.

Thiele, L. 1979. Isocyanatreaktionen und Katalyse in der Polyurethanchemie Fortschrittsbericht. Acta Polymerica 30: 323-342

Theocaris, P.C and Varias, A.G. 1985. Thermal expansion properties of particulates based on the concept of mesophase. J. Appl. Polym. Sci.30: 2979-2995

Tsujimoto, T., Uyama, H. and Kobayashi, S. 2004. Synthesis and Curing Behaviors of Cross-Linkable Polynaphthols from Renewable Resources: Preparation of Artificial Urushi”, Macromolecules 37: 1777-1782

Tortora, M., Gorrasi, G., Vittoria, V., Galli, G., Ritrovati, S. and Chiellini, E. 2002. Structural characterization and transport properties of organically modified montmorillonite/polyurethane nanocomposites. Polymer 43: 6147–6157.

Tundo, P., Anastas, P., Black, D.S., Breen, J., Collins, T., Memoli, S., Miyamoto, J., Polyakoff, M. and Tumas, W., 2000. Synthetic pathways and processes in green chemistry : Introductory overview. Pure Appl. Chem.72 : 1207–1228

Tyan, H.L., Wei, K.H. and Hsieh, T.E. 2000. Mechanical Properties of Clay–Polyimide (BTDA–ODA) Nanocomposites via ODA-Modified Organoclay. Journal of Polymer Science: Part B: Polymer Physics38: 2873–2878

Tyan, H. L., Liu, Y.C. and Wei, K.H. 1999. Thermally and Mechanically Enhanced Clay/Polyimide Nanocomposite via Reactive Organoclay. Chem. Mater. 11: 1942-1947

Urquhart, S.G., Smith, A.P., Ade, H.W., Hithcock, A.P., Rightor, A.G. and Lidy, W. 1999. Near-Edge X-Ray Absorption Fine Structure Spectroscopy of MDI and TDI Polyurethane Polymers. J. Phys.Chem. B 103: 4603

Usuki, A., Kojima, Y., Kawasumi, Okada, A., Fukushima, Y., Kurauchi, T. and Kamigaito, O. 1993. “Synthesis of nylon 6-clay hybrid”, Journal of Materials Resesarch 8 : 1179-1185

Usuki, A; Kato, M; Okada, A; Kurauchi, T. 1997. Synthesis of polypropylene-clay hybrid. Journal of applied polymer science 63 : 137

Utracki, L.A. 2004. Clay-Containing Polymeric Nanocomposites. Vol.1.Rapra Technology Limited. United Kingdom. pp.1-30

Uyama, H., Kuwabara, M., Tsujimoto, T., Nakano, M., Usuki, A. and Kobayashi, S. 2003. Green Nanocomposites from Renewable Resources: Plant Oil-Clay Hybrid Materials. Chemistry of Materials 15: 2492-2494

Vaia, R.A., Teukolsky, R.K. and Giannelis, E.P. 1994. Interlayer Structure and Molecular Environment of Alkylammonium Layered Silicates. Chem. Mater.,: 1017-1022.

Valence, M.A., Yeung, S.A and Cooper, S.L. 1983. A dielectric study of the glass transition region in segmented polyether-urethane copolymers. Colloid Polym. Sci., 261: 541.

Varlot, K.M., Reynaud, E., Vigier, G. and Varlet, J., 2002. Mechanical Properties of Clay-Reinforced Polyamide. Journal of Polymer Science: Part B: Polymer Physics 40: 272–283

Voznyakovskii, A.P., Genkin, A.P., Plyushch, A.V. and Petrova, N.A. 1986. “Method of contrastation of samples of block copolymers containing the rigid block to study their domain structure by electron microscopy method. Vysokomol. Soyed., Ser. A 28: 2621.

Vyazovkin, S., Dranca, I., Fan, X. and Advincula, R. 2004. Degradation and relaxation kinetics of polystyrene-clay nanocomposites preparedby surface initiated polymerization. J.Phys.Chem. 108 : 11672-11679

Wambua, P., Ivens, J. and Verpoest, I. 2003. Natural fibers: can they replace glass in fiber reinforced plastics?. Journal of Composite Science and Technology 63: 1259

Wang, K., Chen, L., Wu, J., Toh, M.L., He, C. and Yee, A.F. 2005. Epoxy Nanocomposites with Highly Exfoliated Clay: Mechanical Properties and Fracture Mechanisms. Macromolecules 38: 788-800

Wang, K., Chen, L., Kotaki, M. and He. C. 2007. Preparation, microstructure and thermal mechanical properties of epoxy/crude clay nanocomposites. Composites: Part A 38 : 192-197

Wang, K.H., Choi, M.H., Koo, C.H., Choi, Y.S. and Chung, I.J. 2001. Synthesis and characterization of maleated polyethylene/clay nanocomposites. Polymer 42 : 9819-9826

Wang, S., Hu, Y., Song, L., Wang, Z., Chen, Z. and Fan, W. 2002. Preparation and thermal properties of ABS/montmorillonite Nanocomposites. Polymer Degradation and Stability 77: 423-426

Wang, X. and Luo, X. 2004. A polymer network based on thermoplastic polyurethane and ethylene-propylene-diene elastomer via melt blending: morphology, mechanical properties, and rheology. European Polymer Journal 40 : 2391

Wang, Z. and Pinnavaia, T.J. 1998. Nanolayer Reinforcement of Elastomeric Polyurethane. Chem. Mater.10: 3769-3771

Warwel, S., Bruse, F., Demes, C., Kunz, M, and Klaas, M.R. 2001. Polymers and surfactants on the basis of renewable resources. Chemosphere 43: 39-48

Wegener, G., Brandt, M., Duda, L., Hofmann, J., Klesczewski, B., Koch, D., Kumpf, R.J., Orzesek, H., Pirkl, H.G., Six, C., Steinlein, C. and Weisbeck, M. 2001. Trends in industrial catalysis in the polyurethane industry. Applied Catalysis A: General 221: 303-335.

Wicks, A.D. and Wicks Jr, W.Z.1999. Blocked isocyanates III: Part A. Mechanisms and chemistry. Progress in Organic Coatings 36 :148-172

Wicks, A.D. and Wicks Jr, W.Z. 2001.Blocked isocyanates III: Part B. Uses and applications of blocked isocyanates. J. Progress in Organic Coatings 41 : 1–83

Wirpsza, Z. 1993. Polyurethanes Chemistry, Technology and Application, pp. 1-60. Ellis Horwood Limited Publisher. Chichester, British.

Wu, Q., Xue, Z., Qi, Z. and Wang, F. 2000. Synthesis and characterization of PAn/clay nanocomposite with extended chain conformation of polyaniline. Polymer 41: 2029-2032.

Xiong, J., Liu, Y., Yang, X. and Wang, X. 2004. Thermal and mechanical properties of polyurethane/montmorillonite nanocomposites based on a novel reactive modifier. Polym. Degrad. Stab. 86, 549

Xie, H.Q. and Guo, J.S. 2002. Room temperature synthesis and mechanical properties of two kinds of elastomerics interpenetrating polymer networks based on castor oil. European Polymer Journal 38 : 2271

Yano, K., Usuki, A., Okada, A., Kurauchi, T. and Kamigaito, O. 1993. Synthesis and properties of polyimide clay hybrid. Journal of Polymer Science: Part A : Polymer Chemistry 31: 2493-2498

Yeganeh, H. and Mehdizadeh, M.R. 2004. Synthesis and properties of isocyanate curable millable polyurethane elastomers based on castor oil as a renewable resource polyol. European Polymer Journal 40: 1233-1238

Yusoff, S. 2006. Renewable energy from palm oil - innovation on effective utilization of waste. Journal of Cleaner Production14: 87-93

Zhao, C., Qin, H., Gong, F., Feng, M., Zhang, S. and Yang, M. 2005a. Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polymer Degradation and Stability 87 : 183-189

Zhou, Y., Rangari, V., Mahfuza, H., Jeelani, S. and Mallick, P.K. 2005b. Experimental study on thermal and mechanical behavior of polypropylene, talc/polypropylene and polypropylene/clay nanocomposites. Materials Science and Engineering A 402:109–117




DOI: http://dx.doi.org/10.30811/jstr.v21i01.4189

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal Sains dan Teknologi Reaksi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

© 2016 All rights reserved |Jurnal Sains dan Teknologi Reaksi p-ISSN: 1693-248X , e-ISSN: 2549-1202.