Pretreatment Limbah Pengolahan Kopi Untuk Menghasilkan Biogas Pada Proses Anaerobik

Satriananda Satriananda, Khairul Nasrizal, Suryani Salim

Sari


Pada penelitian ini mempelajari proses pretreatment limbah pengolahan kopi untuk menghasilkan biogas pada proses anaerobik. Limbah cair pengolahan kopi merupakan limbah cair yang berasal dari air buangan pada proses pencucian (washing) dan pengupasan (pulping) kopi. Limbah cair pengolahan kopi sendiri memiliki kandungan senyawa organik yang tinggi sehingga cocok untuk dikonversi menjadi biogas. Konversi limbah cair kopi menjadi biogas dilakukan dengan menambahkan kotoran sapi dan kulit kopi sebagai substrat dengan variasi berat bioarang kulit tanduk terdiri dari: 0; 5; 10; 15; 20 gram. Lama fermentasi untuk setiap perlakuan adalah 30 hari. Sebelum dilakukan fermentasi, kulit kopi terlebih dahulu dilakukan pretreatment menggunakan NaOH 8% dan aquades untuk menghilangkan lignin pada kulit kopi yang dapat menghambat pertumbuhan bakteri pada proses anaerobik. Variabel yang diukur meliputi Chemical Oxygen Demand (COD), Total Solids (TS), Volume Biogas, dan pH. Dari hasil penelitian diperoleh nilai terbaik pada digester dengan pretreatment NaOH 8% menggunakan bioarang kulit tanduk kopi sebanyak 15 gram. Nilai COD awal dan akhir yaitu sebesar 7.200 mg/L O2 dan 1.800 mg/L O2 dengan persentase penyisihan senyawa organik sebesar 75%, Total Solid awal dan akhir sebesar 10.940 mg/L dan 14.540 mg/L, Volume biogas 5.200 mL, derajat keasaman (pH) awal dan akhir sebesar 7,4 dan 5,7.  Perlakuan awal dengan pretreatment dan penambahan bioarang mempengaruhi volume biogas yang dihasilkan.

Kata kunci : Aquades, Bioarang, Biogas, NaOH, Pretreatment

Pada penelitian ini mempelajari proses pretreatment limbah pengolahan kopi untuk menghasilkan biogas pada proses anaerobik. Limbah cair pengolahan kopi merupakan limbah cair yang berasal dari air buangan pada proses pencucian (washing) dan pengupasan (pulping) kopi. Limbah cair pengolahan kopi sendiri memiliki kandungan senyawa organik yang tinggi sehingga cocok untuk dikonversi menjadi biogas. Konversi limbah cair kopi menjadi biogas dilakukan dengan menambahkan kotoran sapi dan kulit kopi sebagai substrat dengan variasi berat bioarang kulit tanduk terdiri dari: 0; 5; 10; 15; 20 gram. Lama fermentasi untuk setiap perlakuan adalah 30 hari. Sebelum dilakukan fermentasi, kulit kopi terlebih dahulu dilakukan pretreatment menggunakan NaOH 8% dan aquades untuk menghilangkan lignin pada kulit kopi yang dapat menghambat pertumbuhan bakteri pada proses anaerobik. Variabel yang diukur meliputi Chemical Oxygen Demand (COD), Total Solids (TS), Volume Biogas, dan pH. Dari hasil penelitian diperoleh nilai terbaik pada digester dengan pretreatment NaOH 8% menggunakan bioarang kulit tanduk kopi sebanyak 15 gram. Nilai COD awal dan akhir yaitu sebesar 7.200 mg/L O2 dan 1.800 mg/L O2 dengan persentase penyisihan senyawa organik sebesar 75%, Total Solid awal dan akhir sebesar 10.940 mg/L dan 14.540 mg/L, Volume biogas 5.200 mL, derajat keasaman (pH) awal dan akhir sebesar 7,4 dan 5,7.  Perlakuan awal dengan pretreatment dan penambahan bioarang mempengaruhi volume biogas yang dihasilkan.

Kata kunci : Aquades, Bioarang, Biogas, NaOH, Pretreatment


Teks Lengkap:

PDF

Referensi


[BSN] Badan Standarisasi Nasional. (2014). Standar Mutu Biogas Bertekanan Tinggi (Patent No. SNI 8019-2014).

Abraham, A., Mathew, A. K., Park, H., Choi, O., Sindhu, R., Parameswaran, B., ... & Sang, B. I. (2020). Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresource Technology, 301, 122725.

Amin, F.R., Khalid, H., Zhang, H., Rahman, S.U., Zhang, R.H., Liu, G.Q., Chen, C., 2017. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. Amb. Express 7, 72.

Badan Pusat Statistik Kabupaten Aceh Tengah. (2016-2020). Aceh Tengah Dalam Angka 2016-2020, Aceh

Baird, R. B., Eaton, A. D., & Clesceri, L. S. (2012). Standard methods for the examination of water and wastewater (Vol. 10). E. W. Rice (Ed.). Washington, DC: American public health association.

Beggio, G., Schievano, A., Bonato, T., Hennebert, P., Pivato, A., 2019. Statistical analysis for the quality assessment of digestates from separately collected organic fraction of municipal solid waste (OFMSW) and agro-industrial feedstock. Should input feedstock to anaerobic digestion determine the legal status of digestate? Waste Manag. 87, 546–558.

Cao, L., Zhang, C., Chen, H., Tsang, D.C.W., Luo, G., Zhang, S., Chen, J., 2017. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresour. Technol. 245,1184e1193. https://doi.org/10.1016/j.biortech.2017.08.196.

Çelebi, E. B., Aksoy, A., & Sanin, F. D. (2020). Effects of anaerobic digestion enhanced by ultrasound Pretreatment on the fuel properties of municipal sludge. Environmental Science and Pollution Research, 27(14), 17350-17358.

Cheng, Q., Xu, C., Huang, W., Jiang, M., Yan, J., Fan, G., ... & Song, G. (2020). Improving anaerobic digestion of piggery wastewater by alleviating stress of ammonia using biochar derived from rice straw. Environmental Technology & Innovation, 19, 100948.

Chiappero, M., Norouzi, O., Hu, M., Demichelis, F., Berruti, F., Di Maria, F., Mašek, O., & Fiore, S. (2020). Review of biochar role as additive in anaerobik digestion processes. Renewable and Sustainable Energy Reviews, 131(June). https://doi.org/10.1016/j.rser.2020.110037

Cimon, C., Kadota, P., Eskicioglu, C., 2019. Effect of biochar and wood ash amendment on biochemical methane production of wastewater sludge from a temperature phase anaerobic digestion process. Bioresour. Technol., 122440 https://doi.org/10.1016/j.biortech.2019.122440.

Corro, G., Paniagua, L., Pal, U., Bañuelos, F., & Rosas, M. (2013). Generation of biogas from coffee-pulp and cow-dung co-digestion: Infrared studies of postcombustion emissions. Energy Conversion and Management, 74, 471-481.

Dahadha, S., Amin, Z., Lakeh, A.A.B., Elbeshbishy, E., 2017. Evaluation of different Pretreatment processes of lignocellulosic biomass for enhanced biomethane production. Energy Fuels 31, 10335–10347.

Dahunsi, S.O., 2019. Mechanical Pretreatment of lignocelluloses for enhanced biogas production: methane yield prediction from biomass structural components. Bioresour. Technol. 280, 18–26.

Deng, L., Liu, Y., & Wang, W. (2020). Biogas technology. In Biogas Technology. Registered company Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-15-4940-3

Elsayed, M., Ran, Y., Ai, P., Azab, M., Mansour, A., Jin, K., Zhang, Y., Abomohra, A.E.-F.,2020. Innovative integrated approach of biofuel production from agricultural wastes by anaerobic digestion and black soldier fly larvae. J.Clean. Prod. 263,121495 https://doi.org/10.1016/j.jclepro.2020.121495.

Fagbohungbe, M., Herbert, B., Hurst, L., Ibeto, C., Li, H., Usmani, S., Semple, K., 2017. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste. Manage. 61, 236–249.

Federation, W. E., & Aph Association. (2005). Standard methods for the examination of water and wastewater. American Pubic Health Association (APHA): Washington, DC, USA, 2005, 21.

Feng, R., Zaidi, A.A., Zhang, K., Shi, Y., 2018. Optimization of microwave Pretreatment for biogas enhancement through anaerobic digestion of microalgal biomass. Period. Polytech. Chem. Eng. 63, 65–72.

Greses, S., Gaby, J.C., Aguado, D., Ferrer, J., Seco, A., Horn, S.J., 2017. Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions. Algal Res. 27, 121–130. https://doi.org/10.1016/j.algal.2017.09.002.

Indren, M., Birzer, C.H., Kidd, S.P., Hall, T., Medwell, P.R., 2020. Effects of biochar parent material and microbial pre-loading in biochar-amended high- solids anaerobic digestion. Bioresour. Technol. 298, 122457 https://doi.org/10.1016/j.biortech.2019.122457.

Iweka, S. C., Owuama, K. C., Chukwuneke, J. L., & Falowo, O. A. (2021). Optimization of biogas yield from anaerobic co-digestion of corn-chaff and cow dung digestate: RSM and python approach. Heliyon, 7(11), e08255.

Kapoor, R., Ghosh, P., Tyagi, B., Vijay, V.K., Vijay, V., Thakur, I.S., Kamyab, H., Nguyen, D.D., Kumar, A., 2020. Advances in biogas valorization and utilization systems: a comprehensive review. J. Clean. Prod. 273, 123052 https://doi.org/10.1016/j.jclepro.2020.123052.

Karimi, K., Taherzadeh, M.J., 2016b. A critical review of analytical methods in Pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour. Technol. 200, 1008–1018.

Koupaie, E.H., Dahadha, S., BazyarLakeh, A.A., Azizi, A., Elbeshbishy, E., 2019. Enzymatic Pretreatment of lignocellulosic biomass for enhanced biomethane production– a review. J Environ. Manage. 233, 774–784.

Kumar, A.K., Sharma, S., 2017. Recent updates on different methods of Pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess. 4, 7.

Lima, D.R.S., Adarme, O.F.H., Baêta, B.E.L., Gurgel, L.V.A., de Aquino, S.F.,2018. Influence of different thermal Pretreatments and inoculum selection on the biomethanation of sugarcane bagasse by solid-state anaerobic digestion: a kinetic analysis. Ind. Crop. Prod. 111, 684–693.

Lin, R., Cheng, J., Ding, L., Murphy, J.D., 2018. Improved efficiency of anaerobic digestion through direct interspecies electron transfer at mesophilic and thermophilic temperature ranges. Chem. Eng. J. 350, 681–691. https://doi.org/10.1016/j.cej.2018.05.173.

Luo, T., Huang, H., Mei, Z., Shen, F., Ge, Y., Hu, G., Meng, X., 2019. Hydrothermal Pretreatment of rice straw at relatively lower temperature to improve biogas production via anaerobic digestion. Chin. Chem. Lett. 30, 1219–1223.

Millati, R., Wikandari, R., Ariyanto, T., Putri, R.U., Taherzadeh, M.J., 2020. Pretreatment technologies for anaerobic digestion of lignocelluloses and toxic feedstocks. Bioresour. Technol. 304, 122998.

Mustafa, A.M., Poulsen, T.G., Sheng, K., 2016. Fungal Pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solidstate anaerobic digestion. Appl. Energy 180, 661–671.

Neshat, S.A., Mohammadi, M., Najafpour, G.D., Lahijani, P., 2017. Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew. Sustain. Energy Rev. 79, 308–322.

Ni’mah, L. 2014. Biogas from Solid Waste of Tofu Production and Cow Manure Mixture: Composition Effect. Chemica Volume 1, Nomor 1 ISSN :2355- 8776.

Pan, J., Ma, J., Liu, X., Zhai, L., Ouyang, X., Liu, H., 2019a. Effects of different types of biochar on the anaerobic digestion of chicken manure. Bioresour. Technol. 275, 258–265. https://doi.org/10.1016/j.biortech.2018.12.068.

Patinvoh, R.J., Osadolor, O.A., Chandolias, K., Horváth, I.S., Taherzadeh, M.J., 2017. Innovative Pretreatment strategies for biogas production. Bioresour. Technol. 224, 13–24.

Paudel, S.R., Banjara, S.P., Choi, O.K., Park, K.Y., Kim, Y.M., Lee, J.W., 2017. Pretreatment of agricultural biomass for anaerobic digestion: current state and challenges. Bioresour. Technol. 245, 1194–1205.

Phuttaro, C., Sawatdeenarunat, C., Surendra, K.C., Boonsawang, P., Chaiprapat, S., Khanal, S.K., 2019. Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass: Influence of Pretreatment temperatures, inhibitors and soluble organics on methane yield. Bioresour. Technol. 284, 128–138.

Ramdiana. 2017. Pengaruh Variasi Komposisi pada Campuran Limbah Cair Aren dan Kotoran Sapi Terhadap Produksi Biogas. Eksergi, 14(2) ISSN: 1410-394X.

Rodriguez, C., Alaswad, A., Benyounis, K.Y., Olabi, A.G., 2017. Pretreatment techniques used in biogas production from grass. Renew. Sustain. Energy Rev. 68, 1193–1204.

Romero-Güiza, M.S., Vila, J., Mata-Alvarez, J., Chimenos, J.M., Astals, S., 2016. The role of additives on anaerobic digestion: a review. Renew. Sustain. Energy Rev. 58, 1486–1499.

Rusdiyono, A. P., Kirom, M. R., dan Qurthobi, A. 2017. Perancangan Alat Ukur Konsentrasi Gas Metana dari Anaerobic Baffled Reactor (Abr) Semi- Kontinyu dengan Substrat Susu Basi. E-proceeding Of Engineering. Vol.4 No.1 ISSN : 2355-9365

Saif, I., Salama, E. S., Usman, M., Lee, D. S., Malik, K., Liu, P., & Li, X. (2021). Improved digestibility and biogas production from lignocellulosic biomass: Biochar addition and microbial response. Industrial Crops and Products, 171, 113851.

Saini, J.K., Saini, R., Tewari, L., 2015. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation biogas production: concepts and recent developments. 3 Biotech 5, 337–353.

Sepehri, A., Sarrafzadeh, M.H., Avateffazeli, M., 2019. Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2019.119164

Shrestha, S., Fonoll, X., Khanal, S.K., Raskin, L., 2017. Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: current status and future perspectives. Bioresour. Technol. 245, 1245–1257.

Tabatabaei, M., Karimi, K., Kumar, R., Horváth, I.S., 2015. Renewable Energy and alternative fuel technologies. Biomed. Res. Int 245935.

Taherdanak, M., Zilouei, H., Karimi, K., 2016. The influence of dilute sulfuric acid Pretreatment on biogas production form wheat plant. Int. J. Green Energy 13, 1129–1134.

Travaini, R., Martín-Juárez, J., Lorenzo-Hernando, A., Bolado-Rodríguez, S., 2016. Ozonolysis: an advantageous Pretreatment for lignocellulosic biomass revisited. Bioresour. Technol. 199, 2–12.

Tun, M.M., Juchelková, D., Raclavská, H., Sassmanová, V., 2018. Utilization of biodegradable wastes as a clean energy source in the developing countries: a case study in Myanmar. Energies 11, 3183.

Wagner, A.O., Lackner, N., Mutschlechner, M., Prem, E.M., Markt, R., Illmer, P., 2018. Biological Pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production. Energies 11, 1797.

Wang, S., Yuan, R., Liu, C., Zhou, B., 2020a. Effect of Fe2+ adding period on the biogas production and microbial community distribution during the dry anaerobic digestion process. Process. Saf. Environ. 136, 234–241.

Xiao, B., Tang, X., Yi, H., Dong, L., Han, Y., Liu, J., 2020. Comparison of two advanced anaerobic digestions of sewage sludge with high-temperature thermal Pretreatment and low-temperature thermal-alkaline Pretreatment. Bioresour. Technol. 304, 122979.

Xue, Y., Li, Q., Gu, Y., Yu, H., Zhang, Y., & Zhou, X. (2020). Improving biodegradability and biogas production of miscanthus using a combination of hydrothermal and alkaline Pretreatment. Industrial crops and products, 144, 111985.

Zhang, J., Zhou, H., Gu, J., Huang, F., Yang, W., Wang, S., Yuan, T., Liao, B., 2020a. Effects of nano-Fe3O4-modified biochar on iron plaque formation and Cd accumulation in rice (Oryza sativa L.). Environ. Pollut. 260, 113970.

Zhang, M., & Wang, Y. (2020). Effects of Fe-Mn-modified biochar addition on anaerobic digestion of sewage sludge: biomethane production, heavy metal speciation and performance stability. Bioresource Technology, 313, 123695.

Zieliński, M., Kisielewska, M., Dębowski, M., Elbruda, K., 2019. Effects of nutrients supplementation on enhanced biogas production from maize silage and cattle slurry mixture. Water Air Soil Pollut. 230, 117.




DOI: http://dx.doi.org/10.30811/jstr.v20i01.3114

Refbacks

  • Saat ini tidak ada refbacks.


Creative Commons License

Jurnal Sains dan Teknologi Reaksi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

© 2016 All rights reserved |Jurnal Sains dan Teknologi Reaksi p-ISSN: 1693-248X , e-ISSN: 2549-1202.