DESULFURISASI DAN PENYERAPAN MERKURI SECARA SIMULTAN DARI BATUBARA PERINGKAT RENDAH (ACEH BARAT) UNTUK APLIKASI POWER PLANT DENGAN ADSORBEN ZEOLIT

Yuanda Wattimena

Abstrak


Penelitian ini bertujuan untuk mengurangi emisi gas SO2 dan logam Hg dengan menggunakan adsorben zeolit. Pengujian ini fokus mengevaluasi rasio optimal adsorben terhadap jumlah batubara dan performa penyerapan serta tidak mengurangi nilai bakar batubara. Ekspremintal awal dimulai dari pencampuran batubara dan zeolit dengan rasio 4%, 6%, 8%, 10% dan 12% yang dibagi dalam bentuk briket dan pulverized. Kedua jenis sampel dibakar secara berurutan pada electrical stainless steel reaction tube furnace pada temperatur pembakaran Fluidized Bed Combustion yaitu 600oC , 700oC dan 800oC dengan laju alir udara disesuaikan. Flue gas hasil pembakaran dianalisa menggunakan Gas Combustion and Emission Analyzer (E4400, E-Instrument). Logam Hg yang diserap oleh zeolit pada bottom ash dianalisa menggunakan NIC Mercury SP Anlayzer. Hasil pengujian menunjukan kinerja zeolit terhadap kapasitas penyerapan logam Hg untuk pembakaran batubara pulverized pada temperatur pembakaran 600oC, 700oC dan 800oC masing-masing didapat pada angka 33,6, 19,25 dan 9,97 ppb/gr serta pada pembakaran briket batubara masing-masing sebesar 59,83, 37,8 dan 24,22 ppb/gr. Secara simultan untuk mengurangi emisi SO2 dan logam berat Hg pada fly ash untuk temperatur pembakaran Fluidized Bed Combustion rasio optimum berkisar antara 6%-8% adsoben zeolit dari jumlah massa Batubara Kaway XVI Kabupaten Aceh Barat.

Teks Lengkap:

PDF

Referensi


Ansyori, I., 2011. Pengendalian emisi merkuri di cerobong industri pada penggunaan batu bara sebagai bahan bakar. Ecolab 5, 1–44.

Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., Hausler, R., 2008. Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 9. https://doi.org/10.1088/1468-6996/9/1/013007

ÇakIcǧlu-Ozkan, F., Ülkü, S., 2008. Diffusion mechanism of water vapour in a zeolitic tuff rich in clinoptilolite. J. Therm. Anal. Calorim. 94, 699–702. https://doi.org/10.1007/s10973-008-9357-8

Chen, J.C., Wey, M.Y., Lin, Y.C., 1998. The adsorption of heavy metals by different sorbents under various incineration conditions. Chemosphere 37, 2617–2625. https://doi.org/10.1016/S0045-6535(98)00161-1.

Giang, A., Stokes, L.C., Streets, D.G., Corbitt, E.S., Selin, N.E., 2015. Impacts of the minamata convention on mercury emissions and global deposition from coal-fired power generation in Asia. Environ. Sci. Technol. 49, 5326–5335. https://doi.org/10.1021/acs.est.5b00074.

Hlincik, T., Buryan, P., 2013. Desulfurization of boiler flue gas by means of activated calcium oxide. Fuel Process. Technol. 111, 62–67. https://doi.org/10.1016/j.fuproc.2013.01.018.

Is, I., Gani, A., 2015. Pengaruh Penambahan Kaolin Terhadap Reduksi Logam Pb pada Proses Pembakaran Batubara The Effect of Kaolin Addition on the Leads Reduction in Coal Combustion Process 10.

Kurniasari, L., 2010. Potensi Zeolit Alam sebagai Adsorben Air pada Alat Pengering. J. Momentum 6, 17–20. https://doi.org/10.14710/reaktor.13.3.178-184.

Liu, Y., Bisson, T.M., Yang, H., Xu, Z., 2010. Recent developments in novel sorbents for flue gas clean up. Fuel Process. Technol. 91, 1175–1197. https://doi.org/10.1016/j.fuproc.2010.04.015.

Ma, Y., Qu, Z., Xu, H., Wang, W., Yan, N., 2014. Investigation on mercury removal method from flue gas in the presence of sulfur dioxide. J. Hazard. Mater. 279, 289–295.

https://doi.org/10.1016/j.jhazmat.2014.07.012

Pavlish, J.H., Hamre, L.L., Zhuang, Y., 2010. Mercury control technologies for coal combustion and gasification systems. Fuel 89, 838–847. https://doi.org/10.1016/j.fuel.2009.05.021

Syamsuddin, Y., Rizal, S., Materials, A., 2013. Use of Biomass as Co-Fuel in Briquetting of Low-Rank Coal : Strengthen the Energy Supply and Save the Environment 7, 643–648.

Wang, J., Zhang, Y., Han, L., Chang,L., Bao, W., 2013. Simultaneous removal of hydrogen sulfide and mercury from simulated syngas by iron-based sorbents. Fuel 103, 73–79. https://doi.org/10.1016/j.fuel.2011.10.056

Wdowin, M., Wiatros-Motyka, M.M., Panek, R., Stevens, L.A., Franus, W., Snape, C.E., 2014. Experimental study of mercury removal from exhaust gases. Fuel 128, 451–457. https://doi.org/10.1016/j.fuel.2014.03.041

Wilcox, J., Rupp, E., Ying, S.C., Lim, D.H., Negreira, A.S., Kirchofer, A., Feng, F., Lee, K., 2012. Mercury adsorption and oxidation in coal combustion and gasification processes. Int. J. Coal Geol. 90–91, 4–20. https://doi.org/10.1016/j.coal.2011.12.003

Yao, H., Naruse, I., 2005. Control of trace metal emissions by sorbents during sewage sludge combustion. Proc. Combust. Inst. 30 II, 3009–3016. https://doi.org/10.1016/j.proci.2004.07.047

Zheng, Y., Jensen, A.D., Windelin, C., Jensen, F., 2012. Review of technologies for mercury removal from flue gas from cement production processes. Prog. Energy Combust. Sci. 38, 599–629. https://doi.org/10.1016/j.pecs.2012.05.001


Refbacks

  • Saat ini tidak ada refbacks.


Jurnal Sains dan Teknologi Reaksia is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

© 2017 All rights reserved
web
analytics